Cbgcbg's picture
Qwen3-8B Math Full SFT - Epoch 11 Checkpoint - 20250725_161659
9fb87d6 verified
metadata
license: apache-2.0
base_model: unsloth/Qwen3-8B
tags:
  - unsloth
  - qwen3
  - mathematical-reasoning
  - epoch11-checkpoint
  - full-finetuning
  - paper-config
language:
  - en
pipeline_tag: text-generation
library_name: transformers

Qwen3-8B Math SFT - Epoch 11 Checkpoint

Full parameter fine-tuning checkpoint from mathematical reasoning training.

πŸ“Š Training Details

  • Base Model: unsloth/Qwen3-8B (full precision)
  • Training Method: Full parameter fine-tuning (92.4% parameters trained)
  • Progress: Epoch 11/20 (55% complete)
  • Dataset: Paper's Official Dataset (7,110 training samples)
  • Configuration: Paper's exact Stage 1 SFT settings

πŸ”§ Training Configuration

  • Batch Size: 1 x 16 = 16 effective
  • Learning Rate: 1e-5 (paper's exact)
  • Max Sequence Length: 24,000 (paper's exact)
  • Optimizer: paged_adamw_8bit
  • Scheduler: cosine
  • Epochs: 20 total

🎯 Expected Performance

Epoch 11 Characteristics:

Mid-Stage: Strong mathematical reasoning capability. Good accuracy on most problems, well-structured solutions.

πŸ“ˆ Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model
model = AutoModelForCausalLM.from_pretrained(
    "Cbgcbg/qwen3-8b-math-full-sft-epoch11-20250725_161659",
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("Cbgcbg/qwen3-8b-math-full-sft-epoch11-20250725_161659")

# Example usage
messages = [
    {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
    {"role": "user", "content": "Find the derivative of f(x) = x^3 + 2x^2 - 5x + 3"}
]

inputs = tokenizer.apply_chat_template(
    messages, 
    tokenize=True, 
    return_tensors="pt", 
    add_generation_prompt=True
)

outputs = model.generate(
    inputs, 
    max_new_tokens=512, 
    temperature=0.7,
    do_sample=True
)

response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
print(response)

πŸ”— Related Models

  • Paper Source: "A Practical Two-Stage Recipe for Mathematical LLMs"
  • Training Approach: Full parameter fine-tuning (Stage 1 SFT only)
  • Final Model: Will be available after 20 epochs complete

πŸ“… Training Timeline

  • Started: 20250725_161659
  • Current: Epoch 11/20 checkpoint
  • Status: Intermediate checkpoint

This model follows the exact configuration from the paper's Stage 1 SFT approach with full parameter fine-tuning for optimal mathematical reasoning performance.