Create setup_project.py
Browse files- setup_project.py +142 -0
setup_project.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
import random
|
| 5 |
+
|
| 6 |
+
# Define the directory structure
|
| 7 |
+
project_root = 'project_root'
|
| 8 |
+
model_dir = os.path.join(project_root, 'model')
|
| 9 |
+
tokenizer_dir = os.path.join(model_dir, 'tokenizer')
|
| 10 |
+
scripts_dir = os.path.join(project_root, 'scripts')
|
| 11 |
+
|
| 12 |
+
# Create directories
|
| 13 |
+
os.makedirs(tokenizer_dir, exist_ok=True)
|
| 14 |
+
os.makedirs(scripts_dir, exist_ok=True)
|
| 15 |
+
|
| 16 |
+
# Step 2: Create config.json
|
| 17 |
+
config = {
|
| 18 |
+
"model_type": "my_model_type",
|
| 19 |
+
"input_size": 100,
|
| 20 |
+
"hidden_size": 64,
|
| 21 |
+
"output_size": 10,
|
| 22 |
+
"num_layers": 1,
|
| 23 |
+
"dropout": 0.2
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
with open(os.path.join(model_dir, 'config.json'), 'w') as f:
|
| 27 |
+
json.dump(config, f)
|
| 28 |
+
|
| 29 |
+
# Step 3: Create a sample pytorch_model.bin
|
| 30 |
+
class SampleModel(torch.nn.Module):
|
| 31 |
+
def __init__(self):
|
| 32 |
+
super(SampleModel, self).__init__()
|
| 33 |
+
self.linear = torch.nn.Linear(100, 10)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
return self.linear(x)
|
| 37 |
+
|
| 38 |
+
# Initialize and save the model weights
|
| 39 |
+
model = SampleModel()
|
| 40 |
+
torch.save(model.state_dict(), os.path.join(model_dir, 'pytorch_model.bin'))
|
| 41 |
+
|
| 42 |
+
# Step 4: Create vocab.txt for tokenizer
|
| 43 |
+
vocab = ['hello', 'world', 'my', 'model', 'tokenization', 'is', 'important']
|
| 44 |
+
vocab_file_path = os.path.join(tokenizer_dir, 'vocab.txt')
|
| 45 |
+
with open(vocab_file_path, 'w') as f:
|
| 46 |
+
for token in vocab:
|
| 47 |
+
f.write(f"{token}\n")
|
| 48 |
+
|
| 49 |
+
# Step 5: Create tokenizer.json
|
| 50 |
+
tokenizer_config = {
|
| 51 |
+
"vocab_size": len(vocab),
|
| 52 |
+
"do_lower_case": True,
|
| 53 |
+
"tokenizer_type": "MyTokenizer"
|
| 54 |
+
}
|
| 55 |
+
with open(os.path.join(tokenizer_dir, 'tokenizer.json'), 'w') as f:
|
| 56 |
+
json.dump(tokenizer_config, f)
|
| 57 |
+
|
| 58 |
+
# Step 6: Create train.py
|
| 59 |
+
train_script = """import torch
|
| 60 |
+
import torch.nn as nn
|
| 61 |
+
import torch.optim as optim
|
| 62 |
+
|
| 63 |
+
class SampleModel(nn.Module):
|
| 64 |
+
def __init__(self):
|
| 65 |
+
super(SampleModel, self).__init__()
|
| 66 |
+
self.linear = nn.Linear(100, 10)
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
return self.linear(x)
|
| 70 |
+
|
| 71 |
+
def train():
|
| 72 |
+
model = SampleModel()
|
| 73 |
+
criterion = nn.CrossEntropyLoss()
|
| 74 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 75 |
+
|
| 76 |
+
# Sample data
|
| 77 |
+
inputs = torch.randn(100, 100) # 100 samples
|
| 78 |
+
targets = torch.randint(0, 10, (100,)) # 100 random labels
|
| 79 |
+
|
| 80 |
+
# Training loop (simplified)
|
| 81 |
+
for epoch in range(5): # 5 epochs
|
| 82 |
+
optimizer.zero_grad()
|
| 83 |
+
outputs = model(inputs)
|
| 84 |
+
loss = criterion(outputs, targets)
|
| 85 |
+
loss.backward()
|
| 86 |
+
optimizer.step()
|
| 87 |
+
print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")
|
| 88 |
+
|
| 89 |
+
if __name__ == "__main__":
|
| 90 |
+
train()
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
with open(os.path.join(scripts_dir, 'train.py'), 'w') as f:
|
| 94 |
+
f.write(train_script)
|
| 95 |
+
|
| 96 |
+
# Step 7: Create inference.py
|
| 97 |
+
inference_script = """import torch
|
| 98 |
+
import torch.nn as nn
|
| 99 |
+
|
| 100 |
+
class SampleModel(nn.Module):
|
| 101 |
+
def __init__(self):
|
| 102 |
+
super(SampleModel, self).__init__()
|
| 103 |
+
self.linear = nn.Linear(100, 10)
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
return self.linear(x)
|
| 107 |
+
|
| 108 |
+
def inference(input_data):
|
| 109 |
+
model = SampleModel()
|
| 110 |
+
model.load_state_dict(torch.load('model/pytorch_model.bin'))
|
| 111 |
+
model.eval()
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
output = model(input_data)
|
| 114 |
+
return output
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
# Sample inference
|
| 118 |
+
input_data = torch.randn(1, 100) # Single sample
|
| 119 |
+
output = inference(input_data)
|
| 120 |
+
print(output)
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
with open(os.path.join(scripts_dir, 'inference.py'), 'w') as f:
|
| 124 |
+
f.write(inference_script)
|
| 125 |
+
|
| 126 |
+
# Step 8: Create utils.py
|
| 127 |
+
utils_script = """def load_model(model_path):
|
| 128 |
+
import torch
|
| 129 |
+
model = SampleModel()
|
| 130 |
+
model.load_state_dict(torch.load(model_path))
|
| 131 |
+
model.eval()
|
| 132 |
+
return model
|
| 133 |
+
|
| 134 |
+
def preprocess_input(input_data):
|
| 135 |
+
# Add input preprocessing logic here
|
| 136 |
+
return input_data
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
with open(os.path.join(scripts_dir, 'utils.py'), 'w') as f:
|
| 140 |
+
f.write(utils_script)
|
| 141 |
+
|
| 142 |
+
print("Project structure created successfully!")
|