π RabbitRedux Code Classification Model
π Overview
The RabbitRedux Code Classification Model is a transformer-based AI designed for code classification in cybersecurity and software engineering contexts.
π§ Features
β
Pre-trained on diverse datasets
β
Fine-tuned for cybersecurity-focused classification
β
Optimized for Python, JavaScript, and more
π Usage
1οΈβ£ Install Dependencies
pip install transformers torch
2οΈβ£ Load the Model
from transformers import pipeline
# Load RabbitRedux
classifier = pipeline("text-classification", model="canstralian/RabbitRedux")
# Example classification
code_snippet = "def hello_world():\n print('Hello, world!')"
result = classifier(code_snippet)
print(result)
3οΈβ£ Example Output
[
{"label": "Python Function", "score": 0.98}
]
π Model Details
β’ Developed by: canstralian
β’ Architecture: Transformer-based (Fine-tuned)
β’ Training Datasets:
- Canstralian/Wordlists
- Canstralian/CyberExploitDB
- Canstralian/pentesting_dataset
- Canstralian/ShellCommands
β’ Fine-tuned from:
- replit/replit-code-v1_5-3b
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B
β’ License: MIT
π Performance
Metric | Value |
---|---|
Accuracy | 94.5% |
F1 Score | 92.8% |
π₯ Deployment
You can deploy this model as an API using Hugging Face Spaces.
Deploy with Docker
docker build -t rabbitredux .
docker run -p 5000:5000 rabbitredux
Use with FastAPI
If you want a scalable API:
pip install fastapi uvicorn
Then, create a FastAPI server:
from fastapi import FastAPI
from transformers import pipeline
app = FastAPI()
classifier = pipeline("text-classification", model="canstralian/RabbitRedux")
@app.post("/classify/")
def classify_code(data: dict):
return {"classification": classifier(data["code"])}
Run with:
uvicorn app:app --host 0.0.0.0 --port 8000
π Useful Resources
β’ GitHub: canstralian
β’ Hugging Face Model: RabbitRedux
β’ Replit Profile: canstralian
π License
Licensed under the MIT License.
Model tree for Canstralian/RabbitRedux
Base model
meta-llama/Llama-3.1-70B