|
import os |
|
from typing import Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MixinConfig(PretrainedConfig): |
|
def __init__( |
|
self, |
|
mixin_every_n_layers=4, |
|
language_dim=4096, |
|
vision_dim=4096, |
|
head_dim=128, |
|
num_heads=16, |
|
intermediate_size=16384, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.mixin_every_n_layers = mixin_every_n_layers |
|
self.language_dim=language_dim |
|
self.vision_dim=vision_dim |
|
self.head_dim=head_dim |
|
self.num_heads=num_heads |
|
self.intermediate_size=intermediate_size |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if 'mixin_config' in config_dict: |
|
config_dict = config_dict['mixin_config'] |
|
|
|
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |