ayymen's picture
End of training
02850fd verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - automatic-speech-recognition
  - CLEAR-Global/luo_19h
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-luo_cv_fleurs_19h
    results: []

w2v-bert-2.0-luo_cv_fleurs_19h

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/LUO_19H - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2682
  • Wer: 0.2998
  • Cer: 0.0930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.698 6.4935 1000 0.7171 0.5988 0.1884
0.2666 12.9870 2000 0.3521 0.3862 0.1107
0.1497 19.4805 3000 0.2914 0.3351 0.0979
0.0802 25.9740 4000 0.2682 0.2976 0.0931
0.053 32.4675 5000 0.3036 0.3060 0.0913
0.0309 38.9610 6000 0.3689 0.2906 0.0939
0.0245 45.4545 7000 0.4164 0.3792 0.1007
0.0122 51.9481 8000 0.3996 0.3166 0.0964
0.0088 58.4416 9000 0.4323 0.3056 0.0952

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1