w2v-bert-2.0-luo_cv_fleurs_19h-v4
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/LUO_19H - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.2866
- Wer: 0.3289
- Cer: 0.0998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- training_steps: 100000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.5991 | 6.4935 | 1000 | 0.6712 | 0.5595 | 0.1797 |
0.231 | 12.9870 | 2000 | 0.3213 | 0.3638 | 0.1045 |
0.1231 | 19.4805 | 3000 | 0.2866 | 0.3285 | 0.0990 |
0.0514 | 25.9740 | 4000 | 0.2907 | 0.3122 | 0.0961 |
0.0294 | 32.4675 | 5000 | 0.3262 | 0.3073 | 0.0932 |
0.0264 | 38.9610 | 6000 | 0.3543 | 0.3047 | 0.0945 |
0.0116 | 45.4545 | 7000 | 0.3592 | 0.3104 | 0.0963 |
0.009 | 51.9481 | 8000 | 0.3849 | 0.3355 | 0.0949 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CLEAR-Global/w2v-bert-2.0-luo_cv_fleurs_19h-v4
Base model
facebook/w2v-bert-2.0