w2v-bert-2.0-luo_cv_fleurs_19h-v4

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/LUO_19H - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2866
  • Wer: 0.3289
  • Cer: 0.0998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.025
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.5991 6.4935 1000 0.6712 0.5595 0.1797
0.231 12.9870 2000 0.3213 0.3638 0.1045
0.1231 19.4805 3000 0.2866 0.3285 0.0990
0.0514 25.9740 4000 0.2907 0.3122 0.0961
0.0294 32.4675 5000 0.3262 0.3073 0.0932
0.0264 38.9610 6000 0.3543 0.3047 0.0945
0.0116 45.4545 7000 0.3592 0.3104 0.0963
0.009 51.9481 8000 0.3849 0.3355 0.0949

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CLEAR-Global/w2v-bert-2.0-luo_cv_fleurs_19h-v4

Finetuned
(305)
this model