w2v-bert-2.0-hausa_250_250h-v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/HAUSA_250_250H - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2342
  • Wer: 0.3272
  • Cer: 0.1883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 160
  • eval_batch_size: 160
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 320
  • total_eval_batch_size: 320
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.7042 0.6406 1000 0.2138 0.4636 0.4197
0.1899 1.2812 2000 0.2016 0.3279 0.3774
0.1452 1.9218 3000 0.3020 0.3606 0.1979
0.0677 2.5625 4000 0.2921 0.3504 0.1944
0.2191 3.2031 5000 0.2762 0.3494 0.1949
0.179 3.8437 6000 0.2679 0.3459 0.1931
0.0563 4.4843 7000 0.2740 0.3457 0.1932
0.2152 5.1249 8000 0.2632 0.3475 0.1930
0.1954 5.7655 9000 0.2553 0.3437 0.1928
0.0463 6.4061 10000 0.2516 0.3383 0.1919
0.1641 7.0468 11000 0.2535 0.3350 0.1909
0.2033 7.6874 12000 0.2436 0.3362 0.1907
0.0648 8.3280 13000 0.2619 0.3364 0.1907
0.1271 8.9686 14000 0.2534 0.3392 0.1907
0.1678 9.6092 15000 0.2463 0.3328 0.1899
0.0971 10.2498 16000 0.2505 0.3353 0.1907
0.0785 10.8905 17000 0.2412 0.3334 0.1901
0.0536 11.5311 18000 0.2420 0.3323 0.1895
0.1352 12.1717 19000 0.2458 0.3341 0.1902
0.1101 12.8123 20000 0.2385 0.3339 0.1896
0.0352 13.4529 21000 0.2454 0.3297 0.1890
0.1061 14.0935 22000 0.2433 0.3271 0.1885
0.1361 14.7341 23000 0.2415 0.3343 0.1893
0.0583 15.3748 24000 0.2517 0.3347 0.1896
0.1463 16.0154 25000 0.2341 0.3274 0.1884
0.1579 16.6560 26000 0.2450 0.3292 0.1887
0.0675 17.2966 27000 0.2523 0.3293 0.1888
0.0609 17.9372 28000 0.2474 0.3297 0.1887
0.0624 18.5778 29000 0.2439 0.3285 0.1883
0.079 19.2184 30000 0.2480 0.3292 0.1888

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CLEAR-Global/w2v-bert-2.0-hausa_250_250h

Finetuned
(302)
this model

Collection including CLEAR-Global/w2v-bert-2.0-hausa_250_250h