mms-1b-100_400h-hau-ft

This model is a fine-tuned version of facebook/mms-1b-all on the /MNT/MD0/SYNVOICES/DATA/HAUSA_100_400H - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3479
  • Wer: 0.3637
  • Cer: 0.0925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2656 0.0352 500 0.4470 0.4257 0.1129
0.3361 0.0703 1000 0.4310 0.4270 0.1113
0.3601 0.1055 1500 0.4189 0.4154 0.1084
0.3229 0.1406 2000 0.4152 0.4121 0.1068
0.2776 0.1758 2500 0.4124 0.4124 0.1063
0.29 0.2109 3000 0.4082 0.4076 0.1055
0.2527 0.2461 3500 0.4018 0.4063 0.1050
0.2838 0.2812 4000 0.4009 0.4101 0.1048
0.2896 0.3164 4500 0.4078 0.4132 0.1069
0.1849 0.3515 5000 0.3945 0.4033 0.1040
0.2475 0.3867 5500 0.4011 0.4023 0.1034
0.2712 0.4218 6000 0.3901 0.3935 0.1017
0.2279 0.4570 6500 0.3956 0.3951 0.1018
0.2572 0.4921 7000 0.3888 0.3961 0.1017
0.2063 0.5273 7500 0.3953 0.4051 0.1042
0.2289 0.5624 8000 0.4044 0.4129 0.1084
0.1979 0.5976 8500 0.3861 0.3939 0.1010
0.2124 0.6328 9000 0.3852 0.3913 0.1007
0.2312 0.6679 9500 0.3782 0.3890 0.0995
0.184 0.7031 10000 0.3745 0.3880 0.0993
0.2669 0.7382 10500 0.3773 0.3885 0.0998
0.2357 0.7734 11000 0.3827 0.3869 0.0992
0.2739 0.8085 11500 0.3777 0.3855 0.0984
0.1769 0.8437 12000 0.3736 0.3871 0.0986
0.161 0.8788 12500 0.3731 0.3863 0.0990
0.2052 0.9140 13000 0.3759 0.3882 0.0988
0.1487 0.9491 13500 0.3730 0.3862 0.0985
0.1493 0.9843 14000 0.3710 0.3826 0.0983
0.1698 1.0194 14500 0.3771 0.3880 0.0999
0.2625 1.0546 15000 0.3687 0.3850 0.0980
0.1515 1.0897 15500 0.3658 0.3820 0.0975
0.2034 1.1249 16000 0.3681 0.3781 0.0969
0.2207 1.1600 16500 0.3634 0.3833 0.0975
0.1458 1.1952 17000 0.3654 0.3771 0.0965
0.1909 1.2303 17500 0.3659 0.3767 0.0962
0.1686 1.2655 18000 0.3649 0.3735 0.0957
0.2135 1.3006 18500 0.3624 0.3790 0.0958
0.1748 1.3358 19000 0.3590 0.3736 0.0956
0.1961 1.3709 19500 0.3607 0.3779 0.0966
0.1926 1.4061 20000 0.3622 0.3732 0.0955
0.1369 1.4412 20500 0.3589 0.3723 0.0951
0.2438 1.4764 21000 0.3576 0.3746 0.0950
0.1785 1.5115 21500 0.3564 0.3723 0.0947
0.1621 1.5467 22000 0.3579 0.3711 0.0947
0.107 1.5819 22500 0.3540 0.3691 0.0942
0.1623 1.6170 23000 0.3554 0.3717 0.0947
0.1913 1.6522 23500 0.3534 0.3703 0.0939
0.1274 1.6873 24000 0.3534 0.3660 0.0933
0.1101 1.7225 24500 0.3511 0.3694 0.0936
0.2139 1.7576 25000 0.3500 0.3671 0.0933
0.1948 1.7928 25500 0.3513 0.3690 0.0936
0.1652 1.8279 26000 0.3488 0.3662 0.0932
0.2417 1.8631 26500 0.3504 0.3649 0.0928
0.2448 1.8982 27000 0.3496 0.3635 0.0925
0.1266 1.9334 27500 0.3483 0.3641 0.0926
0.1857 1.9685 28000 0.3482 0.3646 0.0927

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
965M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CLEAR-Global/mms-1b-100_400h-hau-ft

Finetuned
(285)
this model

Collection including CLEAR-Global/mms-1b-100_400h-hau-ft