ayymen's picture
Upload folder using huggingface_hub
cd44c6c verified
import os
from trainer import Trainer, TrainerArgs
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
from math import ceil
LANG_TO_ISO = {
"hausa": "ha",
"luo": "luo",
"chichewa": "nya"
}
subdirs = [d for d in os.listdir() if os.path.isdir(d) and d.startswith('xtts')]
OUT_PATH = subdirs[0]
LANG_NAME = OUT_PATH.split('_')[1]
# Logging parameters
RUN_NAME = f"GPT_XTTS_{LANG_NAME.upper()}_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
START_WITH_EVAL = True # if True it will start with evaluation
BATCH_SIZE = 1 # set here the batch size
GRAD_ACUMM_STEPS = ceil(252 / BATCH_SIZE) # set here the grad accumulation steps
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
# Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
formatter="coqui",
dataset_name="ft_dataset",
path="data/",
meta_file_train="manifest_train.csv",
meta_file_val="manifest_dev.csv",
language=LANG_TO_ISO[LANG_NAME],
)
# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]
# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file
XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) # config.json file
# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE):
print(" > Downloading XTTS v2.0 tokenizer!")
ModelManager._download_model_files(
[TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
if not os.path.isfile(XTTS_CHECKPOINT):
print(" > Downloading XTTS v2.0 checkpoint!")
ModelManager._download_model_files(
[XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
if not os.path.isfile(XTTS_CONFIG_FILE):
print(" > Downloading XTTS v2.0 config!")
ModelManager._download_model_files(
[XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
)
print(f"Train samples: {len(train_samples)}")
print(f"Eval samples: {len(eval_samples)}")
# get the longest text audio file to use as speaker reference
samples_len = [len(item["text"].split(" ")) for item in train_samples]
longest_text_idx = samples_len.index(max(samples_len))
SPEAKER_REFERENCE = [train_samples[longest_text_idx]["audio_file"]] # speaker reference to be used in training test sentences
print(f"Using speaker reference: {SPEAKER_REFERENCE}")
LANGUAGE = config_dataset.language
HAUSA_TEST_SENTENCES = [
"Umarnai don zaman tsarki.",
"wanda kuma ya faɗa mana ƙaunar da kuke yi cikin Ruhu.",
"Gama mun ji labarin bangaskiyarku a cikin Yesu Kiristi da kuma ƙaunar da kuke yi saboda dukan tsarkaka."
]
LUO_TEST_SENTENCES = [
"jo kolosai achiel.",
"magoyo erokamano ni wuoro ka un gi mor.",
"epafra bende nonyisowa kuom hera ma roho maler osemiyou."
]
CHICHEWA_TEST_SENTENCES = [
"umene unafika kwa inu.",
"tukiko adzakuwuzani zonse za ine.",
"iye anachita mtendere kudzera mʼmagazi ake, wokhetsedwa pa mtanda."
]
TEST_SENTENCES = {
"hausa": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in HAUSA_TEST_SENTENCES],
"luo": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in LUO_TEST_SENTENCES],
"chichewa": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in CHICHEWA_TEST_SENTENCES]
}
def main():
# init args and config
model_args = GPTArgs(
max_conditioning_length=132300, # 6 secs
min_conditioning_length=11025, # 0.5 secs
debug_loading_failures=True,
max_wav_length=12*22050, # 12 secs
max_text_length=300,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig()
config.load_json(XTTS_CONFIG_FILE)
config.mixed_precision = True
config.precision = "bf16"
config.epochs = 1000
config.output_path = OUT_PATH
config.model_args = model_args
config.run_name = RUN_NAME
config.project_name = PROJECT_NAME
config.run_description = """
GPT XTTS training
""",
config.dashboard_logger = DASHBOARD_LOGGER
config.logger_uri = LOGGER_URI
config.audio = audio_config
config.batch_size = BATCH_SIZE
config.eval_batch_size = BATCH_SIZE
config.num_loader_workers = 8
config.print_step = 50
config.plot_step = 100
config.log_model_step = 100
config.save_step = 10000
config.save_n_checkpoints = 2
config.save_checkpoints = True
config.save_best_after = 0
config.print_eval = False
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
config.optimizer = "AdamW"
config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS
config.optimizer_params = {"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}
config.lr = 5e-06 # learning rate
config.lr_scheduler = "MultiStepLR"
config.lr_scheduler_params = {"milestones": [5000, 150000, 300000], "gamma": 0.5, "last_epoch": -1}
config.test_sentences=TEST_SENTENCES[LANG_NAME]
# init the model from config
model = GPTTrainer.init_from_config(config)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS,
),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
if __name__ == "__main__":
main()