|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.config.shared_configs import BaseDatasetConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig |
|
from TTS.utils.manage import ModelManager |
|
from math import ceil |
|
|
|
LANG_TO_ISO = { |
|
"hausa": "ha", |
|
"luo": "luo", |
|
"chichewa": "nya" |
|
} |
|
|
|
subdirs = [d for d in os.listdir() if os.path.isdir(d) and d.startswith('xtts')] |
|
OUT_PATH = subdirs[0] |
|
LANG_NAME = OUT_PATH.split('_')[1] |
|
|
|
|
|
RUN_NAME = f"GPT_XTTS_{LANG_NAME.upper()}_FT" |
|
PROJECT_NAME = "XTTS_trainer" |
|
DASHBOARD_LOGGER = "tensorboard" |
|
LOGGER_URI = None |
|
|
|
|
|
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True |
|
START_WITH_EVAL = True |
|
BATCH_SIZE = 1 |
|
GRAD_ACUMM_STEPS = ceil(252 / BATCH_SIZE) |
|
|
|
|
|
|
|
config_dataset = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="ft_dataset", |
|
path="data/", |
|
meta_file_train="manifest_train.csv", |
|
meta_file_val="manifest_dev.csv", |
|
language=LANG_TO_ISO[LANG_NAME], |
|
) |
|
|
|
|
|
DATASETS_CONFIG_LIST = [config_dataset] |
|
|
|
|
|
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/") |
|
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) |
|
|
|
|
|
|
|
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth" |
|
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth" |
|
|
|
|
|
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK)) |
|
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK)) |
|
|
|
|
|
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): |
|
print(" > Downloading DVAE files!") |
|
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) |
|
|
|
|
|
|
|
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json" |
|
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth" |
|
XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json" |
|
|
|
|
|
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) |
|
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) |
|
XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) |
|
|
|
|
|
if not os.path.isfile(TOKENIZER_FILE): |
|
print(" > Downloading XTTS v2.0 tokenizer!") |
|
ModelManager._download_model_files( |
|
[TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True |
|
) |
|
if not os.path.isfile(XTTS_CHECKPOINT): |
|
print(" > Downloading XTTS v2.0 checkpoint!") |
|
ModelManager._download_model_files( |
|
[XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True |
|
) |
|
if not os.path.isfile(XTTS_CONFIG_FILE): |
|
print(" > Downloading XTTS v2.0 config!") |
|
ModelManager._download_model_files( |
|
[XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True |
|
) |
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
DATASETS_CONFIG_LIST, |
|
eval_split=True, |
|
) |
|
print(f"Train samples: {len(train_samples)}") |
|
print(f"Eval samples: {len(eval_samples)}") |
|
|
|
|
|
samples_len = [len(item["text"].split(" ")) for item in train_samples] |
|
longest_text_idx = samples_len.index(max(samples_len)) |
|
SPEAKER_REFERENCE = [train_samples[longest_text_idx]["audio_file"]] |
|
print(f"Using speaker reference: {SPEAKER_REFERENCE}") |
|
LANGUAGE = config_dataset.language |
|
|
|
HAUSA_TEST_SENTENCES = [ |
|
"Umarnai don zaman tsarki.", |
|
"wanda kuma ya faɗa mana ƙaunar da kuke yi cikin Ruhu.", |
|
"Gama mun ji labarin bangaskiyarku a cikin Yesu Kiristi da kuma ƙaunar da kuke yi saboda dukan tsarkaka." |
|
] |
|
|
|
LUO_TEST_SENTENCES = [ |
|
"jo kolosai achiel.", |
|
"magoyo erokamano ni wuoro ka un gi mor.", |
|
"epafra bende nonyisowa kuom hera ma roho maler osemiyou." |
|
] |
|
|
|
CHICHEWA_TEST_SENTENCES = [ |
|
"umene unafika kwa inu.", |
|
"tukiko adzakuwuzani zonse za ine.", |
|
"iye anachita mtendere kudzera mʼmagazi ake, wokhetsedwa pa mtanda." |
|
] |
|
|
|
TEST_SENTENCES = { |
|
"hausa": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in HAUSA_TEST_SENTENCES], |
|
"luo": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in LUO_TEST_SENTENCES], |
|
"chichewa": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in CHICHEWA_TEST_SENTENCES] |
|
} |
|
|
|
|
|
def main(): |
|
|
|
model_args = GPTArgs( |
|
max_conditioning_length=132300, |
|
min_conditioning_length=11025, |
|
debug_loading_failures=True, |
|
max_wav_length=12*22050, |
|
max_text_length=300, |
|
mel_norm_file=MEL_NORM_FILE, |
|
dvae_checkpoint=DVAE_CHECKPOINT, |
|
xtts_checkpoint=XTTS_CHECKPOINT, |
|
tokenizer_file=TOKENIZER_FILE, |
|
gpt_num_audio_tokens=1026, |
|
gpt_start_audio_token=1024, |
|
gpt_stop_audio_token=1025, |
|
gpt_use_masking_gt_prompt_approach=True, |
|
gpt_use_perceiver_resampler=True, |
|
) |
|
|
|
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) |
|
|
|
config = GPTTrainerConfig() |
|
|
|
config.load_json(XTTS_CONFIG_FILE) |
|
|
|
config.mixed_precision = True |
|
config.precision = "bf16" |
|
config.epochs = 1000 |
|
config.output_path = OUT_PATH |
|
config.model_args = model_args |
|
config.run_name = RUN_NAME |
|
config.project_name = PROJECT_NAME |
|
config.run_description = """ |
|
GPT XTTS training |
|
""", |
|
config.dashboard_logger = DASHBOARD_LOGGER |
|
config.logger_uri = LOGGER_URI |
|
config.audio = audio_config |
|
config.batch_size = BATCH_SIZE |
|
config.eval_batch_size = BATCH_SIZE |
|
config.num_loader_workers = 8 |
|
config.print_step = 50 |
|
config.plot_step = 100 |
|
config.log_model_step = 100 |
|
config.save_step = 10000 |
|
config.save_n_checkpoints = 2 |
|
config.save_checkpoints = True |
|
config.save_best_after = 0 |
|
config.print_eval = False |
|
|
|
config.optimizer = "AdamW" |
|
config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS |
|
config.optimizer_params = {"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2} |
|
config.lr = 5e-06 |
|
config.lr_scheduler = "MultiStepLR" |
|
config.lr_scheduler_params = {"milestones": [5000, 150000, 300000], "gamma": 0.5, "last_epoch": -1} |
|
config.test_sentences=TEST_SENTENCES[LANG_NAME] |
|
|
|
|
|
model = GPTTrainer.init_from_config(config) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs( |
|
restore_path=None, |
|
skip_train_epoch=False, |
|
start_with_eval=START_WITH_EVAL, |
|
grad_accum_steps=GRAD_ACUMM_STEPS, |
|
), |
|
config, |
|
output_path=OUT_PATH, |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
) |
|
trainer.fit() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|