File size: 8,329 Bytes
cd44c6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os

from trainer import Trainer, TrainerArgs

from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
from math import ceil

LANG_TO_ISO = {
    "hausa": "ha",
    "luo": "luo",
    "chichewa": "nya"
}

subdirs = [d for d in os.listdir() if os.path.isdir(d) and d.startswith('xtts')]
OUT_PATH = subdirs[0]
LANG_NAME = OUT_PATH.split('_')[1]

# Logging parameters
RUN_NAME = f"GPT_XTTS_{LANG_NAME.upper()}_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None

# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True  # for multi-gpu training please make it False
START_WITH_EVAL = True  # if True it will start with evaluation
BATCH_SIZE = 1  # set here the batch size
GRAD_ACUMM_STEPS = ceil(252 / BATCH_SIZE)  # set here the grad accumulation steps
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.

# Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
    formatter="coqui",
    dataset_name="ft_dataset",
    path="data/",
    meta_file_train="manifest_train.csv",
    meta_file_val="manifest_dev.csv",
    language=LANG_TO_ISO[LANG_NAME],
)

# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]

# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)


# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"

# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))

# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
    print(" > Downloading DVAE files!")
    ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)


# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json"

# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK))  # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK))  # model.pth file
XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK))  # config.json file

# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE):
    print(" > Downloading XTTS v2.0 tokenizer!")
    ModelManager._download_model_files(
        [TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
    )
if not os.path.isfile(XTTS_CHECKPOINT):
    print(" > Downloading XTTS v2.0 checkpoint!")
    ModelManager._download_model_files(
        [XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
    )
if not os.path.isfile(XTTS_CONFIG_FILE):
    print(" > Downloading XTTS v2.0 config!")
    ModelManager._download_model_files(
        [XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
    )

# load training samples
train_samples, eval_samples = load_tts_samples(
    DATASETS_CONFIG_LIST,
    eval_split=True,
)
print(f"Train samples: {len(train_samples)}")
print(f"Eval samples: {len(eval_samples)}")

# get the longest text audio file to use as speaker reference
samples_len = [len(item["text"].split(" ")) for item in train_samples]
longest_text_idx = samples_len.index(max(samples_len))
SPEAKER_REFERENCE = [train_samples[longest_text_idx]["audio_file"]]  # speaker reference to be used in training test sentences
print(f"Using speaker reference: {SPEAKER_REFERENCE}")
LANGUAGE = config_dataset.language

HAUSA_TEST_SENTENCES = [
    "Umarnai don zaman tsarki.",
    "wanda kuma ya faɗa mana ƙaunar da kuke yi cikin Ruhu.",
    "Gama mun ji labarin bangaskiyarku a cikin Yesu Kiristi da kuma ƙaunar da kuke yi saboda dukan tsarkaka."
    ]

LUO_TEST_SENTENCES = [
    "jo kolosai achiel.",
    "magoyo erokamano ni wuoro ka un gi mor.",
    "epafra bende nonyisowa kuom hera ma roho maler osemiyou."
    ]

CHICHEWA_TEST_SENTENCES = [
    "umene unafika kwa inu.",
    "tukiko adzakuwuzani zonse za ine.",
    "iye anachita mtendere kudzera mʼmagazi ake, wokhetsedwa pa mtanda."
    ]

TEST_SENTENCES = {
    "hausa": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in HAUSA_TEST_SENTENCES],
    "luo": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in LUO_TEST_SENTENCES],
    "chichewa": [{"text": text, "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE} for text in CHICHEWA_TEST_SENTENCES]
    }


def main():
    # init args and config
    model_args = GPTArgs(
        max_conditioning_length=132300,  # 6 secs
        min_conditioning_length=11025,  # 0.5 secs
        debug_loading_failures=True,
        max_wav_length=12*22050,  # 12 secs
        max_text_length=300,
        mel_norm_file=MEL_NORM_FILE,
        dvae_checkpoint=DVAE_CHECKPOINT,
        xtts_checkpoint=XTTS_CHECKPOINT,  # checkpoint path of the model that you want to fine-tune
        tokenizer_file=TOKENIZER_FILE,
        gpt_num_audio_tokens=1026,
        gpt_start_audio_token=1024,
        gpt_stop_audio_token=1025,
        gpt_use_masking_gt_prompt_approach=True,
        gpt_use_perceiver_resampler=True,
    )
    # define audio config
    audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
    # training parameters config
    config = GPTTrainerConfig()

    config.load_json(XTTS_CONFIG_FILE)

    config.mixed_precision = True
    config.precision = "bf16"
    config.epochs = 1000
    config.output_path = OUT_PATH
    config.model_args = model_args
    config.run_name = RUN_NAME
    config.project_name = PROJECT_NAME
    config.run_description = """
        GPT XTTS training
        """,
    config.dashboard_logger = DASHBOARD_LOGGER
    config.logger_uri = LOGGER_URI
    config.audio = audio_config
    config.batch_size = BATCH_SIZE
    config.eval_batch_size = BATCH_SIZE
    config.num_loader_workers = 8
    config.print_step = 50
    config.plot_step = 100
    config.log_model_step = 100
    config.save_step = 10000
    config.save_n_checkpoints = 2
    config.save_checkpoints = True
    config.save_best_after = 0
    config.print_eval = False
    # Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
    config.optimizer = "AdamW"
    config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS
    config.optimizer_params = {"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}
    config.lr = 5e-06  # learning rate
    config.lr_scheduler = "MultiStepLR"
    config.lr_scheduler_params = {"milestones": [5000, 150000, 300000], "gamma": 0.5, "last_epoch": -1}
    config.test_sentences=TEST_SENTENCES[LANG_NAME]

    # init the model from config
    model = GPTTrainer.init_from_config(config)

    # init the trainer and 🚀
    trainer = Trainer(
        TrainerArgs(
            restore_path=None,  # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
            skip_train_epoch=False,
            start_with_eval=START_WITH_EVAL,
            grad_accum_steps=GRAD_ACUMM_STEPS,
        ),
        config,
        output_path=OUT_PATH,
        model=model,
        train_samples=train_samples,
        eval_samples=eval_samples,
    )
    trainer.fit()


if __name__ == "__main__":
    main()