pydevmini1 - SOTA GGUF

Description

This repo contains State Of The Art quantized GGUF format model files for pydevmini1.

Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of python-specific answers from the CodeFeedback-Filtered-Instruction dataset.

Fill-in-Middle tokens are automatically detected and supported as of commit 11ac980, see example.

Prompt template: ChatML

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Compatibility

These quantised GGUFv3 files are compatible with llama.cpp from April 9th 2025 onwards, as of commit d3bd719

They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
  • GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
  • GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
  • GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
  • GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
  • GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
  • GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
  • GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
  • GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
  • GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
  • GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
  • GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
pydevmini1.IQ2_S.gguf (with YaRN) IQ2_S 2 1.5 GB 2.0 GB small, substantial quality loss
pydevmini1.IQ2_M.gguf (with YaRN) IQ2_M 2 1.6 GB 2.1 GB small, greater quality loss
pydevmini1.IQ3_XXS.gguf (with YaRN) IQ3_XXS 3 1.7 GB 2.2 GB very small, high quality loss
pydevmini1.IQ3_XS.gguf (with YaRN) IQ3_XS 3 1.8 GB 2.3 GB small, substantial quality loss
pydevmini1.IQ3_S.gguf (with YaRN) IQ3_S 3 1.9 GB 2.4 GB small, greater quality loss
pydevmini1.IQ3_M.gguf (with YaRN) IQ3_M 3 2.0 GB 2.5 GB medium, balanced quality
pydevmini1.IQ4_XS.gguf (with YaRN) IQ4_XS 4 2.3 GB 2.8 GB small, marginal quality loss - recommended

Generated importance matrix file: pydevmini1.imatrix.gguf

Note: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

Example llama.cpp command

Make sure you are using llama.cpp from commit d3bd719 or later.

./llama-cli -ngl 37 -m pydevmini1.IQ4_XS.gguf --color -c 262144 --temp 0.7 --top-p 0.8 --top-k 20 --repeat-penalty 1.05 --jinja

Change -ngl 37 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 262144 to the desired sequence length.

If you are low on V/RAM try quantizing the K-cache with -ctk q8_0 or even -ctk q4_0 for big memory savings (depending on context size). There is a similar option for V-cache (-ctv), only available if you enable Flash Attention (-fa) as well.

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python module.

How to load this model in Python code, using llama-cpp-python

For full documentation, please see: llama-cpp-python docs.

First install the package

Run one of the following commands, according to your system:

# Prebuilt wheel with basic CPU support
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# Prebuilt wheel with NVidia CUDA acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
# Prebuilt wheel with Metal GPU acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
# Build base version with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python
# Or with Vulkan acceleration
CMAKE_ARGS="-DGGML_VULKAN=on" pip install llama-cpp-python
# Or with SYCL acceleration
CMAKE_ARGS="-DGGML_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DGGML_CUDA=on"
pip install llama-cpp-python

Simple llama-cpp-python example code

from llama_cpp import Llama

# Chat Completion API

llm = Llama(model_path="./pydevmini1.IQ4_XS.gguf", n_gpu_layers=37, n_ctx=262144)
print(llm.create_chat_completion(
    repeat_penalty = 1.05,
    messages = [
        {
            "role": "user",
            "content": "Pick a LeetCode challenge and solve it in Python."
        }
    ]
))

Simple llama-cpp-python example fill-in-middle code

from llama_cpp import Llama

# Completion API

prompt = "def add("
suffix = "\n    return sum\n\n"

llm = Llama(model_path="./pydevmini1.IQ4_XS.gguf", n_gpu_layers=37, n_ctx=262144)
output = llm.create_completion(
    temperature = 0.0,
    repeat_penalty = 1.0,
    prompt = prompt,
    suffix = suffix
)

# Models sometimes repeat suffix in response, attempt to filter that
response = output["choices"][0]["text"]
response_stripped = response.rstrip()
unwanted_response_suffix = suffix.rstrip()
unwanted_response_length = len(unwanted_response_suffix)

filtered = False
if unwanted_response_suffix and response_stripped[-unwanted_response_length:] == unwanted_response_suffix:
    response = response_stripped[:-unwanted_response_length]
    filtered = True

print(f"Fill-in-Middle completion{' (filtered)' if filtered else ''}:\n\n{prompt}\033[32m{response}\033[{'33' if filtered else '0'}m{suffix}\033[0m")

Simple llama-cpp-python example function calling code

from llama_cpp import Llama

# Chat Completion API

grammar = LlamaGrammar.from_json_schema(json.dumps({
    "type": "array",
    "items": {
        "type": "object",
        "required": [ "name", "arguments" ],
        "properties": {
            "name": {
                "type": "string"
            },
            "arguments": {
                "type": "object"
            }
        }
    }
}))

llm = Llama(model_path="./pydevmini1.IQ4_XS.gguf", n_gpu_layers=37, n_ctx=262144)
response = llm.create_chat_completion(
      temperature = 0.0,
      repeat_penalty = 1.05,
      messages = [
        {
          "role": "user",
          "content": "What's the weather like in Oslo and Stockholm?"
        }
      ],
      tools=[{
        "type": "function",
        "function": {
          "name": "get_current_weather",
          "description": "Get the current weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA"
              },
              "unit": {
                "type": "string",
                "enum": [ "celsius", "fahrenheit" ]
              }
            },
            "required": [ "location" ]
          }
        }
      }],
      grammar = grammar
)
print(json.loads(response["choices"][0]["text"]))

print(llm.create_chat_completion(
      temperature = 0.0,
      repeat_penalty = 1.05,
      messages = [
        {
          "role": "user",
          "content": "What's the weather like in Oslo?"
        },
        { # The tool_calls is from the response to the above with tool_choice active
          "role": "assistant",
          "content": None,
          "tool_calls": [
            {
              "id": "call__0_get_current_weather_cmpl-...",
              "type": "function",
              "function": {
                "name": "get_current_weather",
                "arguments": { "location": "Oslo, Norway" , "unit": "celsius" }
              }
            }
          ]
        },
        { # The tool_call_id is from tool_calls and content is the result from the function call you made
          "role": "tool",
          "content": "20",
          "tool_call_id": "call__0_get_current_weather_cmpl-..."
        }
      ],
      tools=[{
        "type": "function",
        "function": {
          "name": "get_current_weather",
          "description": "Get the current weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA"
              },
              "unit": {
                "type": "string",
                "enum": [ "celsius", "fahrenheit" ]
              }
            },
            "required": [ "location" ]
          }
        }
      }],
      #tool_choice={
      #  "type": "function",
      #  "function": {
      #    "name": "get_current_weather"
      #  }
      #}
))

🚀 Try It Yourself (for free)

Don't just take my word for it. Test the model right now under the exact conditions shown in the video demonstration.

Open In Colab


Model Details

  • Model Type: Causal Language Model
  • Number of Parameters: 4.0B
  • Number of Parameters (Non-Embedding): 3.6B
  • Number of Layers: 36
  • Number of Attention Heads (GQA): 32 for Q, 8 for KV
  • Context Length: 262,144 tokens (native)

Recommended Inference Parameters

For best results, I suggest using the following generation parameters:

  • Temperature: 0.7
  • Top P: 0.8
  • Top K: 20
  • Min P: 0.0

How to Contribute & Provide Feedback For any and all feedback, please open a Community discussion tab on this model repository or join our Discord! Discord: https://discord.gg/RqwqMGhqaC

Downloads last month
-
GGUF
Model size
4.02B params
Architecture
qwen3
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for CISCai/pydevmini1-SOTA-GGUF

Dataset used to train CISCai/pydevmini1-SOTA-GGUF