Taiwanese Hokkien LLM
Collection
The collection of Taiwanese Hokkien (Taigi) large language models and related resources.
•
12 items
•
Updated
The Taigi-Llama-2-Translator series are built based on the Taigi-Llama-2 series model. We conducted fine-tuning on 263k parallel data to create a translation model for Taiwanese Hokkien and related languages.
For more details, please refer to our GitHub repository and the paper: Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems
Explore other models and datasets in the Taiwanese Hokkien LLM collection.
{BOS}[TRANS]\n{source_sentence}\n[/TRANS]\n[{target_language}]\n
source_sentence
: The sentence you want to translate.target_language
: The target language you want to translate to. Use "ZH" for Traditional Chinese, "EN" for English, "POJ" for Taiwanese Hokkien POJ, "HL" for Taiwanese Hokkien Hanlo, and "HAN" for Taiwanese Hokkien Hanzi.from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline
import torch
import accelerate
def get_pipeline(path:str, tokenizer:AutoTokenizer, accelerator:accelerate.Accelerator) -> TextGenerationPipeline:
model = AutoModelForCausalLM.from_pretrained(
path, torch_dtype=torch.float16, device_map='auto', trust_remote_code=True)
terminators = [tokenizer.eos_token_id, tokenizer.pad_token_id]
pipeline = TextGenerationPipeline(model = model, tokenizer = tokenizer, num_workers=accelerator.state.num_processes*4, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators)
return pipeline
model_dir = "Bohanlu/Taigi-Llama-2-Translator-7B" # or "Bohanlu/Taigi-Llama-2-Translator-13B" for the 13B model
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False)
accelerator = accelerate.Accelerator()
pipe = get_pipeline(model_dir, tokenizer, accelerator)
PROMPT_TEMPLATE = "[TRANS]\n{source_sentence}\n[/TRANS]\n[{target_language}]\n"
def translate(source_sentence:str, target_language:str) -> str:
prompt = PROMPT_TEMPLATE.format(source_sentence=source_sentence, target_language=target_language)
out = pipe(prompt, return_full_text=False, repetition_penalty=1.1, do_sample=False)[0]['generated_text']
return out[:out.find("[/")].strip()
source_sentence = "How are you today?"
print("To Hanzi: " + translate(source_sentence, "HAN"))
# Output: To Hanzi: 你今仔日好無?
print("To POJ: " + translate(source_sentence, "POJ"))
# Output: To POJ: Lí kin-á-ji̍t án-chóaⁿ?
print("To Traditional Chinese: " + translate(source_sentence, "ZH"))
# Output: To Traditional Chinese: 你今天好嗎?
print("To Hanlo: " + translate(source_sentence, "HL"))
# Output: To Hanlo: 你今仔日好無?
If you find the resources in the Taiwanese Hokkien LLM collection useful in your work, please cite it using the following reference:
@misc{lu2024enhancing,
title={Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems},
author={Bo-Han Lu and Yi-Hsuan Lin and En-Shiun Annie Lee and Richard Tzong-Han Tsai},
year={2024},
eprint={2403.12024},
archivePrefix={arXiv},
primaryClass={cs.CL}
}