rtdetr-v2-r101-cppe5-finetune-2

This model is a fine-tuned version of PekingU/rtdetr_v2_r101vd for the detection of coronary artery stenosis on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 9.5258
  • Map: 0.3781
  • Map 50: 0.9125
  • Map 75: 0.2023
  • Map Small: 0.2722
  • Map Medium: 0.4358
  • Map Large: 0.4439
  • Mar 1: 0.4279
  • Mar 10: 0.6136
  • Mar 100: 0.6664
  • Mar Small: 0.6158
  • Mar Medium: 0.701
  • Mar Large: 0.6333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large
No log 1.0 313 18.7992 0.0102 0.037 0.0016 0.0193 0.023 0.0 0.0444 0.1863 0.2535 0.253 0.2555 0.0
112.163 2.0 626 14.0671 0.0806 0.265 0.0204 0.0711 0.0931 0.1998 0.1649 0.3478 0.4882 0.4476 0.5154 0.5667
112.163 3.0 939 13.0106 0.1549 0.5077 0.0356 0.1316 0.1788 0.2388 0.2393 0.4002 0.4952 0.4637 0.5172 0.4
12.4154 4.0 1252 12.8674 0.1861 0.578 0.0506 0.1487 0.2151 0.3809 0.2786 0.4329 0.5228 0.5074 0.5334 0.5
10.9002 5.0 1565 12.7759 0.1994 0.6122 0.0592 0.1562 0.2337 0.4435 0.2923 0.4511 0.5369 0.5092 0.5555 0.5667
10.9002 6.0 1878 12.9410 0.2477 0.6845 0.1046 0.1891 0.2878 0.4869 0.3295 0.4896 0.5643 0.5301 0.5872 0.6333
10.0597 7.0 2191 12.0453 0.2511 0.7021 0.092 0.1894 0.2916 0.4639 0.3144 0.4984 0.5683 0.5179 0.6024 0.6
9.4738 8.0 2504 11.6443 0.262 0.6911 0.1112 0.2077 0.3015 0.2426 0.3408 0.5317 0.5898 0.5452 0.6209 0.4667
9.4738 9.0 2817 11.4795 0.3091 0.7994 0.1487 0.2497 0.3488 0.3159 0.3764 0.5331 0.611 0.5664 0.6427 0.4
9.0887 10.0 3130 11.0460 0.3147 0.8058 0.1438 0.2394 0.365 0.469 0.3837 0.5331 0.5933 0.5301 0.6366 0.5333
9.0887 11.0 3443 10.8509 0.3038 0.7871 0.1337 0.214 0.3601 0.3414 0.3804 0.5429 0.5945 0.5435 0.6304 0.4
8.7187 12.0 3756 11.2568 0.2689 0.7366 0.1041 0.1987 0.3154 0.3722 0.3456 0.5245 0.5972 0.5402 0.6362 0.5667
8.5299 13.0 4069 10.6576 0.2818 0.7436 0.1189 0.2007 0.3285 0.2467 0.3433 0.5424 0.6164 0.5732 0.6466 0.5
8.5299 14.0 4382 10.3815 0.2688 0.6636 0.1296 0.1923 0.3198 0.395 0.3618 0.5586 0.6085 0.5518 0.6482 0.4333
8.2714 15.0 4695 10.2251 0.2846 0.7427 0.1324 0.1992 0.3356 0.3412 0.3408 0.5538 0.6187 0.5554 0.6623 0.5333
8.0708 16.0 5008 10.4468 0.2912 0.7585 0.1371 0.188 0.3503 0.2716 0.3442 0.5606 0.6252 0.5839 0.6551 0.3333
8.0708 17.0 5321 10.0924 0.3174 0.8149 0.1384 0.2167 0.3764 0.4464 0.3772 0.5462 0.6038 0.5426 0.6462 0.5
7.8789 18.0 5634 10.1511 0.292 0.7808 0.1069 0.1984 0.3441 0.4159 0.3466 0.5514 0.6103 0.5554 0.6484 0.5
7.8789 19.0 5947 10.0809 0.2872 0.7423 0.1304 0.1846 0.3477 0.3738 0.3546 0.558 0.6196 0.556 0.6638 0.4667
7.7461 20.0 6260 9.7884 0.3327 0.8237 0.1515 0.2486 0.3814 0.4109 0.396 0.579 0.6268 0.586 0.6555 0.4667
7.6557 21.0 6573 9.9407 0.3006 0.7914 0.1273 0.1849 0.3632 0.442 0.3455 0.5555 0.6118 0.5673 0.6429 0.4667
7.6557 22.0 6886 9.7508 0.3278 0.8365 0.1451 0.2254 0.3855 0.4052 0.372 0.5611 0.6179 0.567 0.6524 0.6333
7.4889 23.0 7199 9.9115 0.3163 0.8201 0.1201 0.2166 0.3695 0.4521 0.3826 0.566 0.6277 0.5869 0.6561 0.5333
7.4078 24.0 7512 9.9078 0.3068 0.7968 0.1297 0.1912 0.3724 0.5057 0.3533 0.5677 0.6291 0.5634 0.6743 0.5333
7.4078 25.0 7825 9.9138 0.2985 0.7844 0.1291 0.1905 0.3604 0.499 0.3514 0.5645 0.6385 0.5744 0.683 0.5
7.3325 26.0 8138 9.6711 0.3194 0.8042 0.1664 0.2146 0.3795 0.3995 0.3785 0.5969 0.6546 0.5905 0.6992 0.5
7.3325 27.0 8451 10.1850 0.2888 0.7886 0.1142 0.1822 0.3504 0.4257 0.3229 0.5677 0.6307 0.5616 0.6781 0.5667
7.2804 28.0 8764 10.1133 0.3185 0.8264 0.1482 0.2248 0.3728 0.4663 0.3688 0.5832 0.6509 0.5872 0.6953 0.4667
7.2029 29.0 9077 9.5707 0.3228 0.8097 0.1547 0.2271 0.3774 0.4653 0.3957 0.6044 0.6565 0.6071 0.6913 0.4667
7.2029 30.0 9390 10.1563 0.3377 0.8745 0.1421 0.2499 0.3885 0.3663 0.3789 0.5962 0.648 0.5988 0.683 0.4
7.0825 31.0 9703 9.8796 0.3364 0.8697 0.1503 0.242 0.3886 0.4629 0.3754 0.606 0.6556 0.6006 0.6939 0.5
7.026 32.0 10016 9.8638 0.345 0.8834 0.1628 0.2468 0.4006 0.4779 0.3856 0.6067 0.6615 0.6149 0.6937 0.5667
7.026 33.0 10329 9.6067 0.3561 0.8764 0.1902 0.2453 0.4162 0.399 0.3958 0.608 0.6585 0.6074 0.6947 0.4
6.8795 34.0 10642 9.5258 0.3781 0.9125 0.2023 0.2722 0.4358 0.4439 0.4279 0.6136 0.6664 0.6158 0.701 0.6333
6.8795 35.0 10955 9.4449 0.368 0.9007 0.188 0.2706 0.4204 0.5 0.4066 0.6088 0.6685 0.6253 0.699 0.5
6.7461 36.0 11268 9.2644 0.3658 0.8989 0.1945 0.2671 0.419 0.4653 0.4136 0.6142 0.6635 0.6202 0.6941 0.4667
6.64 37.0 11581 9.2426 0.3645 0.9017 0.1894 0.2627 0.4184 0.3975 0.4108 0.6078 0.6507 0.5997 0.6866 0.4333
6.64 38.0 11894 9.3995 0.3721 0.899 0.1976 0.2764 0.4243 0.4664 0.4192 0.6066 0.6544 0.6068 0.6877 0.5
6.4988 39.0 12207 9.4093 0.3769 0.9078 0.1964 0.2918 0.4253 0.4664 0.4288 0.6064 0.6531 0.6021 0.6887 0.5
6.4018 40.0 12520 9.3955 0.3615 0.8954 0.1759 0.2773 0.4089 0.4663 0.4116 0.6028 0.6546 0.5982 0.6941 0.4667
6.4018 41.0 12833 9.3966 0.3711 0.8973 0.1989 0.2758 0.4238 0.4993 0.421 0.6102 0.6635 0.6152 0.6968 0.6
6.3285 42.0 13146 9.4656 0.3655 0.8967 0.1968 0.2785 0.4172 0.4694 0.4245 0.6163 0.6701 0.6131 0.7097 0.5333
6.3285 43.0 13459 9.4390 0.3728 0.9149 0.1933 0.2914 0.419 0.4663 0.4295 0.6202 0.6675 0.6187 0.7018 0.4667
6.2397 44.0 13772 9.3682 0.3636 0.8795 0.202 0.2785 0.4146 0.4664 0.428 0.6148 0.6627 0.6065 0.7018 0.5
6.1381 45.0 14085 9.2842 0.3692 0.8998 0.2041 0.279 0.4205 0.4663 0.4279 0.6116 0.6625 0.6074 0.7012 0.4667
6.1381 46.0 14398 9.2333 0.3686 0.8987 0.2006 0.2758 0.4211 0.4663 0.428 0.6155 0.6621 0.6095 0.699 0.4667
6.0162 47.0 14711 9.2259 0.366 0.9051 0.1986 0.2756 0.4155 0.4663 0.4245 0.6157 0.6641 0.6128 0.7002 0.4667
5.9406 48.0 15024 9.2568 0.3632 0.902 0.1941 0.2729 0.4133 0.4733 0.4198 0.6145 0.6623 0.606 0.7014 0.5333
5.9406 49.0 15337 9.2850 0.3635 0.904 0.196 0.2733 0.4147 0.479 0.4223 0.616 0.6669 0.6134 0.704 0.5333
5.8549 50.0 15650 9.2647 0.3663 0.8999 0.1997 0.2746 0.4177 0.4663 0.4232 0.6149 0.664 0.6107 0.7014 0.4667

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
9
Safetensors
Model size
76.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Bogdandu24/rtdetr-v2-r101-cppe5-finetune-2

Finetuned
(4)
this model