|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
This model is converted from `decapoda-research/llama-7b-hf` to `ziqingyang/chinese-alpaca-plus-lora-7b` and quantized for use with `ggerganov/llama.cpp`. |
|
|
|
The convertion and quantization is done on Google Colab following Wiki article of `ymcui/Chinese-LLaMA-Alpaca`. |
|
|
|
The quantization methods have been updated for llama.cpp, so please cloning the latest repo and re-compile before loading the model. |
|
|
|
The q8_0 and q5_1 indicate for different quantization method, the former one occupies larger space and theoratically produces better response. |
|
|
|
Example of q8_0 model on llama.cpp (acceptable responses but very short): |
|
|
|
``` |
|
> ./main -m ./models/chinese-Alpaca-7b-plus-ggml-q8_0.bin \ |
|
-t 8 \ |
|
-c 2048 \ |
|
-n 2048 \ |
|
--color \ |
|
--interactive-first \ |
|
--reverse-prompt '## 人类:' \ |
|
-f ./prompts/chat-with-vicuna-chs.txt |
|
main: build = 0 (unknown) |
|
main: seed = 1683883289 |
|
llama.cpp: loading model from ./models/chinese-Alpaca-7b-plus-ggml-q8_0.bin |
|
llama_model_load_internal: format = ggjt v1 (latest) |
|
llama_model_load_internal: n_vocab = 49954 |
|
llama_model_load_internal: n_ctx = 2048 |
|
llama_model_load_internal: n_embd = 4096 |
|
llama_model_load_internal: n_mult = 256 |
|
llama_model_load_internal: n_head = 32 |
|
llama_model_load_internal: n_layer = 32 |
|
llama_model_load_internal: n_rot = 128 |
|
llama_model_load_internal: ftype = 7 (mostly Q8_0) |
|
llama_model_load_internal: n_ff = 11008 |
|
llama_model_load_internal: n_parts = 1 |
|
llama_model_load_internal: model size = 7B |
|
llama_model_load_internal: ggml ctx size = 68.20 KB |
|
llama_model_load_internal: mem required = 9180.13 MB (+ 1026.00 MB per state) |
|
llama_init_from_file: kv self size = 1024.00 MB |
|
|
|
system_info: n_threads = 8 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | |
|
main: interactive mode on. |
|
Reverse prompt: '## 人类:' |
|
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000 |
|
generate: n_ctx = 2048, n_batch = 512, n_predict = 2048, n_keep = 0 |
|
|
|
|
|
== Running in interactive mode. == |
|
- Press Ctrl+C to interject at any time. |
|
- Press Return to return control to LLaMa. |
|
- To return control without starting a new line, end your input with '/'. |
|
- If you want to submit another line, end your input with '\'. |
|
|
|
这是一段人类和人工智能助理的对话。人工智能助理会对人类的问题给出详细、准确、礼貌的回答。 |
|
|
|
## 人类:你好,助理。 |
|
## 助理:你好,有什么需要帮助的吗? |
|
## 人类:天空为什么是蓝色的? |
|
助理:天空之所以呈现蓝色,是因为太阳光在大气层中发生散射作用。 |
|
## 人类:请再详细地解释一下。 |
|
助理:太阳光穿过大气层时,一部分被散射到不同波长的角度上,其中蓝色光的波长比其他颜色短。 |
|
## 人类:你真是惜字如金啊。 |
|
助理:谢谢你的夸奖,但我只是根据我学到的知识和算法来回答你的问题。 |
|
## 人类: |
|
|
|
llama_print_timings: load time = 9418.31 ms |
|
llama_print_timings: sample time = 107.95 ms / 73 runs ( 1.48 ms per run) |
|
llama_print_timings: prompt eval time = 8645.76 ms / 85 tokens ( 101.71 ms per token) |
|
llama_print_timings: eval time = 16303.43 ms / 73 runs ( 223.33 ms per run) |
|
llama_print_timings: total time = 987546.29 ms |
|
``` |
|
|
|
|