segformer-b0-crop-detection

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the BigR-Oclock/CropSegmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2364
  • Mean Iou: 0.4754
  • Mean Accuracy: 0.9509
  • Overall Accuracy: 0.9509
  • Accuracy Background: nan
  • Accuracy Crop: 0.9509
  • Iou Background: 0.0
  • Iou Crop: 0.9509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Crop Iou Background Iou Crop
0.5159 0.1092 50 0.3885 0.4099 0.8197 0.8197 nan 0.8197 0.0 0.8197
0.3496 0.2183 100 0.2894 0.4077 0.8155 0.8155 nan 0.8155 0.0 0.8155
0.3076 0.3275 150 0.2679 0.4386 0.8773 0.8773 nan 0.8773 0.0 0.8773
0.2953 0.4367 200 0.2906 0.4444 0.8888 0.8888 nan 0.8888 0.0 0.8888
0.2322 0.5459 250 0.2511 0.3949 0.7898 0.7898 nan 0.7898 0.0 0.7898
0.2256 0.6550 300 0.2468 0.4529 0.9058 0.9058 nan 0.9058 0.0 0.9058
0.2706 0.7642 350 0.1816 0.4332 0.8663 0.8663 nan 0.8663 0.0 0.8663
0.1979 0.8734 400 0.2390 0.4521 0.9043 0.9043 nan 0.9043 0.0 0.9043
0.2527 0.9825 450 0.2981 0.3835 0.7670 0.7670 nan 0.7670 0.0 0.7670
0.1658 1.0917 500 0.1473 0.4537 0.9073 0.9073 nan 0.9073 0.0 0.9073
0.1866 1.2009 550 0.2338 0.4246 0.8492 0.8492 nan 0.8492 0.0 0.8492
0.1665 1.3100 600 0.1739 0.4639 0.9278 0.9278 nan 0.9278 0.0 0.9278
0.1692 1.4192 650 0.1808 0.4511 0.9022 0.9022 nan 0.9022 0.0 0.9022
0.1803 1.5284 700 0.2468 0.4138 0.8277 0.8277 nan 0.8277 0.0 0.8277
0.1722 1.6376 750 0.1914 0.4345 0.8691 0.8691 nan 0.8691 0.0 0.8691
0.1526 1.7467 800 0.2183 0.4396 0.8792 0.8792 nan 0.8792 0.0 0.8792
0.1409 1.8559 850 0.2273 0.4216 0.8433 0.8433 nan 0.8433 0.0 0.8433
0.169 1.9651 900 0.2728 0.4036 0.8072 0.8072 nan 0.8072 0.0 0.8072
0.1302 2.0742 950 0.2208 0.4452 0.8903 0.8903 nan 0.8903 0.0 0.8903
0.1268 2.1834 1000 0.2283 0.4253 0.8507 0.8507 nan 0.8507 0.0 0.8507
0.1271 2.2926 1050 0.1984 0.4506 0.9012 0.9012 nan 0.9012 0.0 0.9012
0.1321 2.4017 1100 0.1618 0.4560 0.9120 0.9120 nan 0.9120 0.0 0.9120
0.1345 2.5109 1150 0.1725 0.4659 0.9318 0.9318 nan 0.9318 0.0 0.9318
0.1053 2.6201 1200 0.1550 0.4574 0.9148 0.9148 nan 0.9148 0.0 0.9148
0.1245 2.7293 1250 0.1696 0.4816 0.9632 0.9632 nan 0.9632 0.0 0.9632
0.1104 2.8384 1300 0.2519 0.4330 0.8661 0.8661 nan 0.8661 0.0 0.8661
0.1105 2.9476 1350 0.1830 0.4655 0.9310 0.9310 nan 0.9310 0.0 0.9310
0.1215 3.0568 1400 0.2102 0.4596 0.9192 0.9192 nan 0.9192 0.0 0.9192
0.0995 3.1659 1450 0.2363 0.4478 0.8957 0.8957 nan 0.8957 0.0 0.8957
0.1115 3.2751 1500 0.1730 0.4717 0.9435 0.9435 nan 0.9435 0.0 0.9435
0.0998 3.3843 1550 0.2067 0.4535 0.9070 0.9070 nan 0.9070 0.0 0.9070
0.0963 3.4934 1600 0.2127 0.4701 0.9401 0.9401 nan 0.9401 0.0 0.9401
0.0985 3.6026 1650 0.1695 0.4686 0.9371 0.9371 nan 0.9371 0.0 0.9371
0.0822 3.7118 1700 0.2069 0.4494 0.8988 0.8988 nan 0.8988 0.0 0.8988
0.1065 3.8210 1750 0.2140 0.4590 0.9179 0.9179 nan 0.9179 0.0 0.9179
0.0849 3.9301 1800 0.2108 0.4592 0.9183 0.9183 nan 0.9183 0.0 0.9183
0.0917 4.0393 1850 0.1940 0.4668 0.9336 0.9336 nan 0.9336 0.0 0.9336
0.0793 4.1485 1900 0.1795 0.4649 0.9298 0.9298 nan 0.9298 0.0 0.9298
0.0851 4.2576 1950 0.2118 0.4462 0.8924 0.8924 nan 0.8924 0.0 0.8924
0.0951 4.3668 2000 0.2864 0.4212 0.8424 0.8424 nan 0.8424 0.0 0.8424
0.0805 4.4760 2050 0.1498 0.4683 0.9366 0.9366 nan 0.9366 0.0 0.9366
0.085 4.5852 2100 0.2223 0.4514 0.9028 0.9028 nan 0.9028 0.0 0.9028
0.0736 4.6943 2150 0.1860 0.4695 0.9390 0.9390 nan 0.9390 0.0 0.9390
0.079 4.8035 2200 0.2069 0.4653 0.9305 0.9305 nan 0.9305 0.0 0.9305
0.0701 4.9127 2250 0.1728 0.4724 0.9448 0.9448 nan 0.9448 0.0 0.9448
0.0994 5.0218 2300 0.2480 0.4602 0.9204 0.9204 nan 0.9204 0.0 0.9204
0.0749 5.1310 2350 0.1951 0.4663 0.9325 0.9325 nan 0.9325 0.0 0.9325
0.0691 5.2402 2400 0.2103 0.4568 0.9136 0.9136 nan 0.9136 0.0 0.9136
0.0653 5.3493 2450 0.1794 0.4570 0.9140 0.9140 nan 0.9140 0.0 0.9140
0.0621 5.4585 2500 0.1971 0.4715 0.9430 0.9430 nan 0.9430 0.0 0.9430
0.073 5.5677 2550 0.1905 0.4589 0.9179 0.9179 nan 0.9179 0.0 0.9179
0.0658 5.6769 2600 0.2289 0.4791 0.9581 0.9581 nan 0.9581 0.0 0.9581
0.0727 5.7860 2650 0.1976 0.4769 0.9539 0.9539 nan 0.9539 0.0 0.9539
0.0756 5.8952 2700 0.1724 0.4687 0.9373 0.9373 nan 0.9373 0.0 0.9373
0.0756 6.0044 2750 0.1867 0.4566 0.9133 0.9133 nan 0.9133 0.0 0.9133
0.0695 6.1135 2800 0.1944 0.4715 0.9430 0.9430 nan 0.9430 0.0 0.9430
0.0683 6.2227 2850 0.2176 0.4744 0.9488 0.9488 nan 0.9488 0.0 0.9488
0.061 6.3319 2900 0.1959 0.4663 0.9326 0.9326 nan 0.9326 0.0 0.9326
0.06 6.4410 2950 0.2090 0.4615 0.9230 0.9230 nan 0.9230 0.0 0.9230
0.0537 6.5502 3000 0.2119 0.4735 0.9469 0.9469 nan 0.9469 0.0 0.9469
0.0529 6.6594 3050 0.2043 0.4568 0.9136 0.9136 nan 0.9136 0.0 0.9136
0.08 6.7686 3100 0.2130 0.4566 0.9132 0.9132 nan 0.9132 0.0 0.9132
0.0632 6.8777 3150 0.1993 0.4692 0.9384 0.9384 nan 0.9384 0.0 0.9384
0.0641 6.9869 3200 0.2408 0.4454 0.8909 0.8909 nan 0.8909 0.0 0.8909
0.0517 7.0961 3250 0.1836 0.4770 0.9540 0.9540 nan 0.9540 0.0 0.9540
0.0584 7.2052 3300 0.1983 0.4643 0.9285 0.9285 nan 0.9285 0.0 0.9285
0.0559 7.3144 3350 0.2036 0.4609 0.9217 0.9217 nan 0.9217 0.0 0.9217
0.0621 7.4236 3400 0.2058 0.4764 0.9528 0.9528 nan 0.9528 0.0 0.9528
0.0641 7.5328 3450 0.2136 0.4657 0.9314 0.9314 nan 0.9314 0.0 0.9314
0.0481 7.6419 3500 0.1938 0.4699 0.9398 0.9398 nan 0.9398 0.0 0.9398
0.061 7.7511 3550 0.1979 0.4772 0.9545 0.9545 nan 0.9545 0.0 0.9545
0.0561 7.8603 3600 0.2271 0.4691 0.9382 0.9382 nan 0.9382 0.0 0.9382
0.0629 7.9694 3650 0.2220 0.4596 0.9192 0.9192 nan 0.9192 0.0 0.9192
0.0625 8.0786 3700 0.2422 0.4547 0.9094 0.9094 nan 0.9094 0.0 0.9094
0.0479 8.1878 3750 0.2360 0.4791 0.9581 0.9581 nan 0.9581 0.0 0.9581
0.0471 8.2969 3800 0.1981 0.4713 0.9427 0.9427 nan 0.9427 0.0 0.9427
0.0612 8.4061 3850 0.2427 0.4740 0.9479 0.9479 nan 0.9479 0.0 0.9479
0.0526 8.5153 3900 0.2516 0.4716 0.9432 0.9432 nan 0.9432 0.0 0.9432
0.0573 8.6245 3950 0.2240 0.4663 0.9325 0.9325 nan 0.9325 0.0 0.9325
0.0532 8.7336 4000 0.2539 0.4830 0.9659 0.9659 nan 0.9659 0.0 0.9659
0.0537 8.8428 4050 0.2202 0.4633 0.9267 0.9267 nan 0.9267 0.0 0.9267
0.0481 8.9520 4100 0.2155 0.4617 0.9234 0.9234 nan 0.9234 0.0 0.9234
0.0461 9.0611 4150 0.2217 0.4590 0.9181 0.9181 nan 0.9181 0.0 0.9181
0.0486 9.1703 4200 0.2748 0.4420 0.8841 0.8841 nan 0.8841 0.0 0.8841
0.0485 9.2795 4250 0.2172 0.4680 0.9360 0.9360 nan 0.9360 0.0 0.9360
0.0559 9.3886 4300 0.2285 0.4717 0.9434 0.9434 nan 0.9434 0.0 0.9434
0.0434 9.4978 4350 0.2288 0.4749 0.9498 0.9498 nan 0.9498 0.0 0.9498
0.0522 9.6070 4400 0.2420 0.4609 0.9218 0.9218 nan 0.9218 0.0 0.9218
0.0453 9.7162 4450 0.2370 0.4741 0.9481 0.9481 nan 0.9481 0.0 0.9481
0.0538 9.8253 4500 0.2464 0.4565 0.9130 0.9130 nan 0.9130 0.0 0.9130
0.0513 9.9345 4550 0.2364 0.4754 0.9509 0.9509 nan 0.9509 0.0 0.9509

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu118
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
196
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for BigR-Oclock/segformer-b0-crop-detection

Finetuned
(44)
this model