segformer-b0-crop-detection
This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the BigR-Oclock/CropSegmentation dataset. It achieves the following results on the evaluation set:
- Loss: 0.2364
- Mean Iou: 0.4754
- Mean Accuracy: 0.9509
- Overall Accuracy: 0.9509
- Accuracy Background: nan
- Accuracy Crop: 0.9509
- Iou Background: 0.0
- Iou Crop: 0.9509
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crop | Iou Background | Iou Crop |
---|---|---|---|---|---|---|---|---|---|---|
0.5159 | 0.1092 | 50 | 0.3885 | 0.4099 | 0.8197 | 0.8197 | nan | 0.8197 | 0.0 | 0.8197 |
0.3496 | 0.2183 | 100 | 0.2894 | 0.4077 | 0.8155 | 0.8155 | nan | 0.8155 | 0.0 | 0.8155 |
0.3076 | 0.3275 | 150 | 0.2679 | 0.4386 | 0.8773 | 0.8773 | nan | 0.8773 | 0.0 | 0.8773 |
0.2953 | 0.4367 | 200 | 0.2906 | 0.4444 | 0.8888 | 0.8888 | nan | 0.8888 | 0.0 | 0.8888 |
0.2322 | 0.5459 | 250 | 0.2511 | 0.3949 | 0.7898 | 0.7898 | nan | 0.7898 | 0.0 | 0.7898 |
0.2256 | 0.6550 | 300 | 0.2468 | 0.4529 | 0.9058 | 0.9058 | nan | 0.9058 | 0.0 | 0.9058 |
0.2706 | 0.7642 | 350 | 0.1816 | 0.4332 | 0.8663 | 0.8663 | nan | 0.8663 | 0.0 | 0.8663 |
0.1979 | 0.8734 | 400 | 0.2390 | 0.4521 | 0.9043 | 0.9043 | nan | 0.9043 | 0.0 | 0.9043 |
0.2527 | 0.9825 | 450 | 0.2981 | 0.3835 | 0.7670 | 0.7670 | nan | 0.7670 | 0.0 | 0.7670 |
0.1658 | 1.0917 | 500 | 0.1473 | 0.4537 | 0.9073 | 0.9073 | nan | 0.9073 | 0.0 | 0.9073 |
0.1866 | 1.2009 | 550 | 0.2338 | 0.4246 | 0.8492 | 0.8492 | nan | 0.8492 | 0.0 | 0.8492 |
0.1665 | 1.3100 | 600 | 0.1739 | 0.4639 | 0.9278 | 0.9278 | nan | 0.9278 | 0.0 | 0.9278 |
0.1692 | 1.4192 | 650 | 0.1808 | 0.4511 | 0.9022 | 0.9022 | nan | 0.9022 | 0.0 | 0.9022 |
0.1803 | 1.5284 | 700 | 0.2468 | 0.4138 | 0.8277 | 0.8277 | nan | 0.8277 | 0.0 | 0.8277 |
0.1722 | 1.6376 | 750 | 0.1914 | 0.4345 | 0.8691 | 0.8691 | nan | 0.8691 | 0.0 | 0.8691 |
0.1526 | 1.7467 | 800 | 0.2183 | 0.4396 | 0.8792 | 0.8792 | nan | 0.8792 | 0.0 | 0.8792 |
0.1409 | 1.8559 | 850 | 0.2273 | 0.4216 | 0.8433 | 0.8433 | nan | 0.8433 | 0.0 | 0.8433 |
0.169 | 1.9651 | 900 | 0.2728 | 0.4036 | 0.8072 | 0.8072 | nan | 0.8072 | 0.0 | 0.8072 |
0.1302 | 2.0742 | 950 | 0.2208 | 0.4452 | 0.8903 | 0.8903 | nan | 0.8903 | 0.0 | 0.8903 |
0.1268 | 2.1834 | 1000 | 0.2283 | 0.4253 | 0.8507 | 0.8507 | nan | 0.8507 | 0.0 | 0.8507 |
0.1271 | 2.2926 | 1050 | 0.1984 | 0.4506 | 0.9012 | 0.9012 | nan | 0.9012 | 0.0 | 0.9012 |
0.1321 | 2.4017 | 1100 | 0.1618 | 0.4560 | 0.9120 | 0.9120 | nan | 0.9120 | 0.0 | 0.9120 |
0.1345 | 2.5109 | 1150 | 0.1725 | 0.4659 | 0.9318 | 0.9318 | nan | 0.9318 | 0.0 | 0.9318 |
0.1053 | 2.6201 | 1200 | 0.1550 | 0.4574 | 0.9148 | 0.9148 | nan | 0.9148 | 0.0 | 0.9148 |
0.1245 | 2.7293 | 1250 | 0.1696 | 0.4816 | 0.9632 | 0.9632 | nan | 0.9632 | 0.0 | 0.9632 |
0.1104 | 2.8384 | 1300 | 0.2519 | 0.4330 | 0.8661 | 0.8661 | nan | 0.8661 | 0.0 | 0.8661 |
0.1105 | 2.9476 | 1350 | 0.1830 | 0.4655 | 0.9310 | 0.9310 | nan | 0.9310 | 0.0 | 0.9310 |
0.1215 | 3.0568 | 1400 | 0.2102 | 0.4596 | 0.9192 | 0.9192 | nan | 0.9192 | 0.0 | 0.9192 |
0.0995 | 3.1659 | 1450 | 0.2363 | 0.4478 | 0.8957 | 0.8957 | nan | 0.8957 | 0.0 | 0.8957 |
0.1115 | 3.2751 | 1500 | 0.1730 | 0.4717 | 0.9435 | 0.9435 | nan | 0.9435 | 0.0 | 0.9435 |
0.0998 | 3.3843 | 1550 | 0.2067 | 0.4535 | 0.9070 | 0.9070 | nan | 0.9070 | 0.0 | 0.9070 |
0.0963 | 3.4934 | 1600 | 0.2127 | 0.4701 | 0.9401 | 0.9401 | nan | 0.9401 | 0.0 | 0.9401 |
0.0985 | 3.6026 | 1650 | 0.1695 | 0.4686 | 0.9371 | 0.9371 | nan | 0.9371 | 0.0 | 0.9371 |
0.0822 | 3.7118 | 1700 | 0.2069 | 0.4494 | 0.8988 | 0.8988 | nan | 0.8988 | 0.0 | 0.8988 |
0.1065 | 3.8210 | 1750 | 0.2140 | 0.4590 | 0.9179 | 0.9179 | nan | 0.9179 | 0.0 | 0.9179 |
0.0849 | 3.9301 | 1800 | 0.2108 | 0.4592 | 0.9183 | 0.9183 | nan | 0.9183 | 0.0 | 0.9183 |
0.0917 | 4.0393 | 1850 | 0.1940 | 0.4668 | 0.9336 | 0.9336 | nan | 0.9336 | 0.0 | 0.9336 |
0.0793 | 4.1485 | 1900 | 0.1795 | 0.4649 | 0.9298 | 0.9298 | nan | 0.9298 | 0.0 | 0.9298 |
0.0851 | 4.2576 | 1950 | 0.2118 | 0.4462 | 0.8924 | 0.8924 | nan | 0.8924 | 0.0 | 0.8924 |
0.0951 | 4.3668 | 2000 | 0.2864 | 0.4212 | 0.8424 | 0.8424 | nan | 0.8424 | 0.0 | 0.8424 |
0.0805 | 4.4760 | 2050 | 0.1498 | 0.4683 | 0.9366 | 0.9366 | nan | 0.9366 | 0.0 | 0.9366 |
0.085 | 4.5852 | 2100 | 0.2223 | 0.4514 | 0.9028 | 0.9028 | nan | 0.9028 | 0.0 | 0.9028 |
0.0736 | 4.6943 | 2150 | 0.1860 | 0.4695 | 0.9390 | 0.9390 | nan | 0.9390 | 0.0 | 0.9390 |
0.079 | 4.8035 | 2200 | 0.2069 | 0.4653 | 0.9305 | 0.9305 | nan | 0.9305 | 0.0 | 0.9305 |
0.0701 | 4.9127 | 2250 | 0.1728 | 0.4724 | 0.9448 | 0.9448 | nan | 0.9448 | 0.0 | 0.9448 |
0.0994 | 5.0218 | 2300 | 0.2480 | 0.4602 | 0.9204 | 0.9204 | nan | 0.9204 | 0.0 | 0.9204 |
0.0749 | 5.1310 | 2350 | 0.1951 | 0.4663 | 0.9325 | 0.9325 | nan | 0.9325 | 0.0 | 0.9325 |
0.0691 | 5.2402 | 2400 | 0.2103 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
0.0653 | 5.3493 | 2450 | 0.1794 | 0.4570 | 0.9140 | 0.9140 | nan | 0.9140 | 0.0 | 0.9140 |
0.0621 | 5.4585 | 2500 | 0.1971 | 0.4715 | 0.9430 | 0.9430 | nan | 0.9430 | 0.0 | 0.9430 |
0.073 | 5.5677 | 2550 | 0.1905 | 0.4589 | 0.9179 | 0.9179 | nan | 0.9179 | 0.0 | 0.9179 |
0.0658 | 5.6769 | 2600 | 0.2289 | 0.4791 | 0.9581 | 0.9581 | nan | 0.9581 | 0.0 | 0.9581 |
0.0727 | 5.7860 | 2650 | 0.1976 | 0.4769 | 0.9539 | 0.9539 | nan | 0.9539 | 0.0 | 0.9539 |
0.0756 | 5.8952 | 2700 | 0.1724 | 0.4687 | 0.9373 | 0.9373 | nan | 0.9373 | 0.0 | 0.9373 |
0.0756 | 6.0044 | 2750 | 0.1867 | 0.4566 | 0.9133 | 0.9133 | nan | 0.9133 | 0.0 | 0.9133 |
0.0695 | 6.1135 | 2800 | 0.1944 | 0.4715 | 0.9430 | 0.9430 | nan | 0.9430 | 0.0 | 0.9430 |
0.0683 | 6.2227 | 2850 | 0.2176 | 0.4744 | 0.9488 | 0.9488 | nan | 0.9488 | 0.0 | 0.9488 |
0.061 | 6.3319 | 2900 | 0.1959 | 0.4663 | 0.9326 | 0.9326 | nan | 0.9326 | 0.0 | 0.9326 |
0.06 | 6.4410 | 2950 | 0.2090 | 0.4615 | 0.9230 | 0.9230 | nan | 0.9230 | 0.0 | 0.9230 |
0.0537 | 6.5502 | 3000 | 0.2119 | 0.4735 | 0.9469 | 0.9469 | nan | 0.9469 | 0.0 | 0.9469 |
0.0529 | 6.6594 | 3050 | 0.2043 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
0.08 | 6.7686 | 3100 | 0.2130 | 0.4566 | 0.9132 | 0.9132 | nan | 0.9132 | 0.0 | 0.9132 |
0.0632 | 6.8777 | 3150 | 0.1993 | 0.4692 | 0.9384 | 0.9384 | nan | 0.9384 | 0.0 | 0.9384 |
0.0641 | 6.9869 | 3200 | 0.2408 | 0.4454 | 0.8909 | 0.8909 | nan | 0.8909 | 0.0 | 0.8909 |
0.0517 | 7.0961 | 3250 | 0.1836 | 0.4770 | 0.9540 | 0.9540 | nan | 0.9540 | 0.0 | 0.9540 |
0.0584 | 7.2052 | 3300 | 0.1983 | 0.4643 | 0.9285 | 0.9285 | nan | 0.9285 | 0.0 | 0.9285 |
0.0559 | 7.3144 | 3350 | 0.2036 | 0.4609 | 0.9217 | 0.9217 | nan | 0.9217 | 0.0 | 0.9217 |
0.0621 | 7.4236 | 3400 | 0.2058 | 0.4764 | 0.9528 | 0.9528 | nan | 0.9528 | 0.0 | 0.9528 |
0.0641 | 7.5328 | 3450 | 0.2136 | 0.4657 | 0.9314 | 0.9314 | nan | 0.9314 | 0.0 | 0.9314 |
0.0481 | 7.6419 | 3500 | 0.1938 | 0.4699 | 0.9398 | 0.9398 | nan | 0.9398 | 0.0 | 0.9398 |
0.061 | 7.7511 | 3550 | 0.1979 | 0.4772 | 0.9545 | 0.9545 | nan | 0.9545 | 0.0 | 0.9545 |
0.0561 | 7.8603 | 3600 | 0.2271 | 0.4691 | 0.9382 | 0.9382 | nan | 0.9382 | 0.0 | 0.9382 |
0.0629 | 7.9694 | 3650 | 0.2220 | 0.4596 | 0.9192 | 0.9192 | nan | 0.9192 | 0.0 | 0.9192 |
0.0625 | 8.0786 | 3700 | 0.2422 | 0.4547 | 0.9094 | 0.9094 | nan | 0.9094 | 0.0 | 0.9094 |
0.0479 | 8.1878 | 3750 | 0.2360 | 0.4791 | 0.9581 | 0.9581 | nan | 0.9581 | 0.0 | 0.9581 |
0.0471 | 8.2969 | 3800 | 0.1981 | 0.4713 | 0.9427 | 0.9427 | nan | 0.9427 | 0.0 | 0.9427 |
0.0612 | 8.4061 | 3850 | 0.2427 | 0.4740 | 0.9479 | 0.9479 | nan | 0.9479 | 0.0 | 0.9479 |
0.0526 | 8.5153 | 3900 | 0.2516 | 0.4716 | 0.9432 | 0.9432 | nan | 0.9432 | 0.0 | 0.9432 |
0.0573 | 8.6245 | 3950 | 0.2240 | 0.4663 | 0.9325 | 0.9325 | nan | 0.9325 | 0.0 | 0.9325 |
0.0532 | 8.7336 | 4000 | 0.2539 | 0.4830 | 0.9659 | 0.9659 | nan | 0.9659 | 0.0 | 0.9659 |
0.0537 | 8.8428 | 4050 | 0.2202 | 0.4633 | 0.9267 | 0.9267 | nan | 0.9267 | 0.0 | 0.9267 |
0.0481 | 8.9520 | 4100 | 0.2155 | 0.4617 | 0.9234 | 0.9234 | nan | 0.9234 | 0.0 | 0.9234 |
0.0461 | 9.0611 | 4150 | 0.2217 | 0.4590 | 0.9181 | 0.9181 | nan | 0.9181 | 0.0 | 0.9181 |
0.0486 | 9.1703 | 4200 | 0.2748 | 0.4420 | 0.8841 | 0.8841 | nan | 0.8841 | 0.0 | 0.8841 |
0.0485 | 9.2795 | 4250 | 0.2172 | 0.4680 | 0.9360 | 0.9360 | nan | 0.9360 | 0.0 | 0.9360 |
0.0559 | 9.3886 | 4300 | 0.2285 | 0.4717 | 0.9434 | 0.9434 | nan | 0.9434 | 0.0 | 0.9434 |
0.0434 | 9.4978 | 4350 | 0.2288 | 0.4749 | 0.9498 | 0.9498 | nan | 0.9498 | 0.0 | 0.9498 |
0.0522 | 9.6070 | 4400 | 0.2420 | 0.4609 | 0.9218 | 0.9218 | nan | 0.9218 | 0.0 | 0.9218 |
0.0453 | 9.7162 | 4450 | 0.2370 | 0.4741 | 0.9481 | 0.9481 | nan | 0.9481 | 0.0 | 0.9481 |
0.0538 | 9.8253 | 4500 | 0.2464 | 0.4565 | 0.9130 | 0.9130 | nan | 0.9130 | 0.0 | 0.9130 |
0.0513 | 9.9345 | 4550 | 0.2364 | 0.4754 | 0.9509 | 0.9509 | nan | 0.9509 | 0.0 | 0.9509 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu118
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 196
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for BigR-Oclock/segformer-b0-crop-detection
Base model
nvidia/segformer-b0-finetuned-ade-512-512