grateful-shape-212
This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3777
- Accuracy: 0.2708
- Precision: 0.4203
- Recall: 0.2708
- F1: 0.3127
- Roc Auc: 0.5428
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
---|---|---|---|---|---|---|---|---|
1.4367 | 1.0 | 17 | 1.3810 | 0.0898 | 0.4478 | 0.0898 | 0.1092 | 0.5060 |
1.3894 | 2.0 | 34 | 1.3751 | 0.1823 | 0.4052 | 0.1823 | 0.2266 | 0.5250 |
1.3619 | 3.0 | 51 | 1.3766 | 0.2422 | 0.4100 | 0.2422 | 0.2876 | 0.5369 |
1.3523 | 4.0 | 68 | 1.3776 | 0.2708 | 0.4238 | 0.2708 | 0.3132 | 0.5422 |
1.3475 | 5.0 | 85 | 1.3777 | 0.2708 | 0.4203 | 0.2708 | 0.3127 | 0.5428 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cpu
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for BeckerAnas/grateful-shape-212
Base model
facebook/convnextv2-tiny-1k-224