bert_wnut_model

This model is a fine-tuned version of bert-base-cased on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3346
  • Precision: 0.5291
  • Recall: 0.3791
  • F1: 0.4417
  • Accuracy: 0.9477

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 213 0.2607 0.5443 0.2901 0.3785 0.9411
No log 2.0 426 0.2689 0.5474 0.3318 0.4132 0.9453
0.1554 3.0 639 0.2896 0.5253 0.3753 0.4378 0.9475
0.1554 4.0 852 0.3009 0.5079 0.3865 0.4389 0.9474
0.0349 5.0 1065 0.3195 0.5109 0.3920 0.4436 0.9486
0.0349 6.0 1278 0.3346 0.5291 0.3791 0.4417 0.9477

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BaselMousi/bert_wnut_model

Finetuned
(2334)
this model

Dataset used to train BaselMousi/bert_wnut_model

Evaluation results