This is the Huggingface version of Yi-VL-6B model.

You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory

Usage:

import requests
from PIL import Image

import torch
from transformers import AutoProcessor, AutoModelForVision2Seq, LlavaConfig
import transformers
from torch import nn

class LlavaMultiModalProjectorYiVL(nn.Module):
    def __init__(self, config: "LlavaConfig"):
        super().__init__()
        self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.act = nn.GELU()

    def forward(self, image_features):
        hidden_states = self.linear_1(image_features)
        hidden_states = self.linear_2(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_3(hidden_states)
        hidden_states = self.linear_4(hidden_states)
        return hidden_states
# Monkey patch of LlavaMultiModalProjector is mandatory
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL

model_id = "BUAADreamer/Yi-VL-6B-hf"

messages = [
  { "role": "user", "content": "<image>What's in the picture?" }
]
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"

model = AutoModelForVision2Seq.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)
processor = AutoProcessor.from_pretrained(model_id)

text = [processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)]
images = [Image.open(requests.get(image_file, stream=True).raw)]
inputs = processor(text=text, images=images, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs, max_new_tokens=200)
output = processor.batch_decode(output, skip_special_tokens=True)
print(output.split("Assistant:")[-1].strip())

You could also alternatively launch a Web demo by using the CLI command in LLaMA-Factory

llamafactory-cli webchat \
--model_name_or_path BUAADreamer/Yi-VL-6B-hf \
--template yivl \
--visual_inputs

lmms-eval Evaluation Results

Metric Value
MMMU_val 36.8
CMMMU_val 32.2
Downloads last month
313
Safetensors
Model size
6.72B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using BUAADreamer/Yi-VL-6B-hf 2