This is the Huggingface version of Yi-VL-6B model.
You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory
- Developed by: 01-AI.
- Language(s) (NLP): Chinese/English
- License: Yi Series Model License
Usage:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq, LlavaConfig
import transformers
from torch import nn
class LlavaMultiModalProjectorYiVL(nn.Module):
def __init__(self, config: "LlavaConfig"):
super().__init__()
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.act = nn.GELU()
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_3(hidden_states)
hidden_states = self.linear_4(hidden_states)
return hidden_states
# Monkey patch of LlavaMultiModalProjector is mandatory
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL
model_id = "BUAADreamer/Yi-VL-6B-hf"
messages = [
{ "role": "user", "content": "<image>What's in the picture?" }
]
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = AutoModelForVision2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
text = [processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)]
images = [Image.open(requests.get(image_file, stream=True).raw)]
inputs = processor(text=text, images=images, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200)
output = processor.batch_decode(output, skip_special_tokens=True)
print(output.split("Assistant:")[-1].strip())
You could also alternatively launch a Web demo by using the CLI command in LLaMA-Factory
llamafactory-cli webchat \
--model_name_or_path BUAADreamer/Yi-VL-6B-hf \
--template yivl \
--visual_inputs
lmms-eval Evaluation Results
Metric | Value |
---|---|
MMMU_val | 36.8 |
CMMMU_val | 32.2 |
- Downloads last month
- 313
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.