|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: vit-base-patch16-224-in21k-finetuned-hongrui_mammogram_v_1 |
|
results: [] |
|
datasets: |
|
- hongrui/mammogram_v_1 |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224-in21k-finetuned-hongrui_mammogram_v_1 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7419 |
|
- Accuracy: 0.6991 |
|
- F1: 0.6767 |
|
- Precision: 0.6830 |
|
- Recall: 0.6991 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.8576 | 1.0 | 171 | 0.8431 | 0.6678 | 0.6067 | 0.7751 | 0.6678 | |
|
| 0.8297 | 2.0 | 342 | 0.7965 | 0.6791 | 0.6182 | 0.6758 | 0.6791 | |
|
| 0.8303 | 3.0 | 513 | 0.7872 | 0.6842 | 0.6360 | 0.6704 | 0.6842 | |
|
| 0.7814 | 4.0 | 684 | 0.7717 | 0.6843 | 0.6597 | 0.6601 | 0.6843 | |
|
| 0.7768 | 5.0 | 855 | 0.7694 | 0.6906 | 0.6544 | 0.6775 | 0.6906 | |
|
| 0.7415 | 6.0 | 1026 | 0.7572 | 0.6962 | 0.6718 | 0.6764 | 0.6962 | |
|
| 0.7351 | 7.0 | 1197 | 0.7549 | 0.6922 | 0.6569 | 0.6648 | 0.6922 | |
|
| 0.7197 | 8.0 | 1368 | 0.7479 | 0.6986 | 0.6855 | 0.6926 | 0.6986 | |
|
| 0.7087 | 9.0 | 1539 | 0.7445 | 0.6979 | 0.6697 | 0.6792 | 0.6979 | |
|
| 0.6977 | 10.0 | 1710 | 0.7419 | 0.6991 | 0.6767 | 0.6830 | 0.6991 | |
|
|
|
 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |