BTX24's picture
Model save
a923af2 verified
|
raw
history blame
3.47 kB
metadata
library_name: transformers
license: other
base_model: nvidia/mit-b4
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: mit-b4-finetuned-stroke-binary
    results: []

mit-b4-finetuned-stroke-binary

This model is a fine-tuned version of nvidia/mit-b4 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1130
  • Accuracy: 0.9683
  • F1: 0.9683
  • Precision: 0.9684
  • Recall: 0.9683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5714 0.6202 100 0.4776 0.7879 0.7800 0.7900 0.7879
0.3897 1.2357 200 0.3239 0.8716 0.8704 0.8711 0.8716
0.2951 1.8558 300 0.3120 0.8765 0.8724 0.8858 0.8765
0.23 2.4713 400 0.1994 0.9281 0.9271 0.9304 0.9281
0.2135 3.0868 500 0.2157 0.9281 0.9267 0.9333 0.9281
0.2106 3.7070 600 0.1809 0.9380 0.9382 0.9387 0.9380
0.1576 4.3225 700 0.1629 0.9403 0.9404 0.9404 0.9403
0.1434 4.9426 800 0.1526 0.9543 0.9542 0.9543 0.9543
0.1391 5.5581 900 0.1268 0.9575 0.9575 0.9575 0.9575
0.1048 6.1736 1000 0.1489 0.9557 0.9555 0.9558 0.9557
0.1271 6.7938 1100 0.1448 0.9570 0.9566 0.9586 0.9570
0.091 7.4093 1200 0.1451 0.9570 0.9567 0.9580 0.9570
0.1159 8.0248 1300 0.1205 0.9629 0.9627 0.9636 0.9629
0.1151 8.6450 1400 0.1124 0.9665 0.9664 0.9666 0.9665
0.0735 9.2605 1500 0.1175 0.9643 0.9641 0.9645 0.9643
0.0537 9.8806 1600 0.1154 0.9679 0.9678 0.9679 0.9679
0.0666 10.4961 1700 0.1162 0.9701 0.9701 0.9701 0.9701
0.0732 11.1116 1800 0.1133 0.9679 0.9678 0.9679 0.9679
0.0775 11.7318 1900 0.1130 0.9683 0.9683 0.9684 0.9683

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0