BTX24's picture
Update README.md
e264463 verified
---
library_name: transformers
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: deit-base-patch16-224-finetuned-stroke-binary
results: []
datasets:
- BTX24/tekno21-brain-stroke-dataset-binary
---
# deit-base-patch16-224-finetuned-stroke-binary
This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on an BTX24/tekno21-brain-stroke-dataset-binary dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1527
- Accuracy: 0.9489
- F1: 0.9484
- Precision: 0.9505
- Recall: 0.9489
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 48
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.1646 | 0.6202 | 100 | 0.1588 | 0.9430 | 0.9425 | 0.9442 | 0.9430 |
| 0.1417 | 1.2357 | 200 | 0.1640 | 0.9439 | 0.9433 | 0.9458 | 0.9439 |
| 0.1681 | 1.8558 | 300 | 0.1622 | 0.9453 | 0.9447 | 0.9470 | 0.9453 |
| 0.1512 | 2.4713 | 400 | 0.1510 | 0.9435 | 0.9430 | 0.9441 | 0.9435 |
| 0.1506 | 3.0868 | 500 | 0.1913 | 0.9340 | 0.9327 | 0.9391 | 0.9340 |
| 0.1654 | 3.7070 | 600 | 0.1679 | 0.9426 | 0.9419 | 0.9442 | 0.9426 |
| 0.1482 | 4.3225 | 700 | 0.1551 | 0.9403 | 0.9402 | 0.9402 | 0.9403 |
| 0.1599 | 4.9426 | 800 | 0.1489 | 0.9462 | 0.9457 | 0.9471 | 0.9462 |
| 0.1477 | 5.5581 | 900 | 0.1437 | 0.9426 | 0.9424 | 0.9425 | 0.9426 |
| 0.1308 | 6.1736 | 1000 | 0.1527 | 0.9417 | 0.9414 | 0.9416 | 0.9417 |
| 0.1362 | 6.7938 | 1100 | 0.1608 | 0.9426 | 0.9421 | 0.9432 | 0.9426 |
| 0.1494 | 7.4093 | 1200 | 0.1601 | 0.9435 | 0.9429 | 0.9451 | 0.9435 |
| 0.1592 | 8.0248 | 1300 | 0.1430 | 0.9430 | 0.9429 | 0.9429 | 0.9430 |
| 0.16 | 8.6450 | 1400 | 0.1504 | 0.9457 | 0.9451 | 0.9475 | 0.9457 |
| 0.1245 | 9.2605 | 1500 | 0.1506 | 0.9462 | 0.9458 | 0.9470 | 0.9462 |
| 0.1397 | 9.8806 | 1600 | 0.1971 | 0.9313 | 0.9300 | 0.9359 | 0.9313 |
| 0.1396 | 10.4961 | 1700 | 0.1527 | 0.9489 | 0.9484 | 0.9505 | 0.9489 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.0
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/IFuGQ-kkCjVH--4eyht0R.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/CztgY9KMJ5AhHY2TGo7qk.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/REn-aZtdJ8bAm4_lWSJDV.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/rZhYIlfmQg62Pq-1vt71j.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/75hOug5_xZeyk69eAW8as.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/NAomNblJJoYM1ki1caw1h.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/rOY6uq2Tb2W4pwYygtws3.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/MiiBgBt1SVoGA1DGjCzBR.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/6aYsp0Q01uKGu7nFRF0jK.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/1IlTpcATEDWXVO3ZVU8yc.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/i4g8AM9nePnUTPRPmSBAd.png)