BTX24's picture
Training in progress, step 100
6c38bab verified
|
raw
history blame
5.62 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: deit-base-patch16-224-finetuned-stroke-binary
    results: []

deit-base-patch16-224-finetuned-stroke-binary

This model is a fine-tuned version of facebook/deit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1572
  • Accuracy: 0.9412
  • F1: 0.9407
  • Precision: 0.9419
  • Recall: 0.9412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 48
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7318 0.6202 100 0.7300 0.4509 0.3933 0.5863 0.4509
0.6751 1.2357 200 0.6745 0.5699 0.5670 0.5647 0.5699
0.6521 1.8558 300 0.6379 0.6431 0.5742 0.6402 0.6431
0.5941 2.4713 400 0.5868 0.7010 0.6588 0.7256 0.7010
0.5435 3.0868 500 0.5232 0.7445 0.7133 0.7816 0.7445
0.4554 3.7070 600 0.4618 0.7820 0.7602 0.8189 0.7820
0.3992 4.3225 700 0.3778 0.8399 0.8327 0.8519 0.8399
0.3563 4.9426 800 0.3372 0.8494 0.8434 0.8596 0.8494
0.3286 5.5581 900 0.2941 0.8810 0.8785 0.8846 0.8810
0.2749 6.1736 1000 0.2696 0.8874 0.8854 0.8895 0.8874
0.2687 6.7938 1100 0.2890 0.8788 0.8744 0.8901 0.8788
0.26 7.4093 1200 0.2636 0.8901 0.8868 0.8988 0.8901
0.2624 8.0248 1300 0.2342 0.9082 0.9071 0.9092 0.9082
0.2853 8.6450 1400 0.2192 0.9132 0.9122 0.9143 0.9132
0.2153 9.2605 1500 0.2269 0.9104 0.9090 0.9130 0.9104
0.2288 9.8806 1600 0.2319 0.9082 0.9064 0.9124 0.9082
0.2233 10.4961 1700 0.2089 0.9177 0.9165 0.9201 0.9177
0.2006 11.1116 1800 0.2029 0.9209 0.9205 0.9207 0.9209
0.2059 11.7318 1900 0.1981 0.9199 0.9196 0.9198 0.9199
0.1993 12.3473 2000 0.2155 0.9168 0.9150 0.9220 0.9168
0.1925 12.9674 2100 0.1921 0.9258 0.9249 0.9274 0.9258
0.2067 13.5829 2200 0.1957 0.9267 0.9258 0.9286 0.9267
0.1856 14.1984 2300 0.1927 0.9272 0.9261 0.9297 0.9272
0.217 14.8186 2400 0.2155 0.9204 0.9188 0.9253 0.9204
0.1895 15.4341 2500 0.1782 0.9349 0.9343 0.9357 0.9349
0.2031 16.0496 2600 0.2666 0.8928 0.8888 0.9060 0.8928
0.1853 16.6698 2700 0.1845 0.9335 0.9331 0.9339 0.9335
0.1868 17.2853 2800 0.2151 0.9204 0.9185 0.9273 0.9204
0.1725 17.9054 2900 0.1789 0.9335 0.9330 0.9341 0.9335
0.1899 18.5209 3000 0.1704 0.9389 0.9384 0.9399 0.9389
0.1614 19.1364 3100 0.1761 0.9353 0.9348 0.9362 0.9353
0.166 19.7566 3200 0.1767 0.9362 0.9357 0.9372 0.9362
0.1783 20.3721 3300 0.1584 0.9403 0.9401 0.9403 0.9403
0.159 20.9922 3400 0.1572 0.9408 0.9403 0.9413 0.9408
0.1668 21.6078 3500 0.1652 0.9426 0.9419 0.9442 0.9426
0.1423 22.2233 3600 0.1601 0.9380 0.9376 0.9384 0.9380
0.1713 22.8434 3700 0.1572 0.9421 0.9417 0.9428 0.9421
0.1657 23.4589 3800 0.1579 0.9408 0.9403 0.9413 0.9408
0.1424 24.0744 3900 0.1689 0.9403 0.9397 0.9417 0.9403
0.169 24.6946 4000 0.1558 0.9444 0.9439 0.9451 0.9444
0.1439 25.3101 4100 0.1572 0.9412 0.9407 0.9419 0.9412

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0