metadata
license: apache-2.0
base_model: facebook/convnextv2-base-22k-224
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: convnextv2-base-22k-224-finetuned-tekno24
results: []
convnextv2-base-22k-224-finetuned-tekno24
This model is a fine-tuned version of facebook/convnextv2-base-22k-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9468
- Accuracy: 0.5932
- F1: 0.5674
- Precision: 0.5709
- Recall: 0.5932
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.2755 | 0.9963 | 68 | 1.2008 | 0.4904 | 0.3910 | 0.4577 | 0.4904 |
1.1711 | 1.9927 | 136 | 1.0651 | 0.5354 | 0.4766 | 0.4865 | 0.5354 |
1.1599 | 2.9890 | 204 | 1.0533 | 0.5418 | 0.5077 | 0.5275 | 0.5418 |
1.1595 | 4.0 | 273 | 1.0423 | 0.5455 | 0.5414 | 0.5691 | 0.5455 |
1.096 | 4.9963 | 341 | 1.0160 | 0.5611 | 0.5463 | 0.5419 | 0.5611 |
1.0592 | 5.9927 | 409 | 0.9847 | 0.5767 | 0.5415 | 0.5485 | 0.5767 |
1.0706 | 6.9890 | 477 | 0.9868 | 0.5886 | 0.5836 | 0.5862 | 0.5886 |
1.0404 | 8.0 | 546 | 0.9758 | 0.5868 | 0.5737 | 0.5695 | 0.5868 |
1.0059 | 8.9963 | 614 | 0.9468 | 0.5932 | 0.5674 | 0.5709 | 0.5932 |
0.965 | 9.9927 | 682 | 0.9565 | 0.5932 | 0.5804 | 0.5858 | 0.5932 |
0.9362 | 10.9890 | 750 | 0.9466 | 0.5886 | 0.5778 | 0.5768 | 0.5886 |
0.9334 | 11.9560 | 816 | 0.9442 | 0.5859 | 0.5700 | 0.5692 | 0.5859 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1