BTX24's picture
Model save
12cd9bb verified
|
raw
history blame
2.82 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnextv2-base-22k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: convnextv2-base-22k-224-finetuned-tekno24
    results: []

convnextv2-base-22k-224-finetuned-tekno24

This model is a fine-tuned version of facebook/convnextv2-base-22k-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9135
  • Accuracy: 0.5954
  • F1: 0.5879
  • Precision: 0.5865
  • Recall: 0.5954

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.3179 0.9968 78 1.2415 0.4207 0.3979 0.4642 0.4207
1.1998 1.9936 156 1.0769 0.5103 0.4525 0.5309 0.5103
1.168 2.9904 234 1.0573 0.5494 0.5033 0.5605 0.5494
1.1107 4.0 313 0.9924 0.5540 0.5163 0.5257 0.5540
1.1062 4.9968 391 1.0018 0.5747 0.5507 0.5660 0.5747
1.0331 5.9936 469 0.9901 0.5931 0.5768 0.6202 0.5931
1.0409 6.9904 547 0.9634 0.5747 0.5723 0.5722 0.5747
1.0176 8.0 626 0.9504 0.5931 0.5834 0.5814 0.5931
0.995 8.9968 704 0.9584 0.5908 0.5854 0.5853 0.5908
0.9937 9.9936 782 0.9339 0.6023 0.5934 0.5894 0.6023
0.9387 10.9904 860 0.9120 0.6138 0.5996 0.5969 0.6138
0.9324 11.9617 936 0.9135 0.5954 0.5879 0.5865 0.5954

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1