|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1 |
|
tags: |
|
- gqa |
|
- t5 |
|
- instruct |
|
datasets: |
|
- pszemraj/infinity-instruct-7m-T2T_en |
|
pipeline_tag: text2text-generation |
|
--- |
|
|
|
|
|
# tFINE-680m-e32-d16-infinity_instruct-L2 |
|
|
|
this is an instruction-tuned version of a pretrained t5 with GQA. |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of [BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1) on the pszemraj/infinity-instruct-7m-T2T_en dataset (config `deduped-L2`). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3139 |
|
- Num Input Tokens Seen: 361724696 |
|
|
|
## usage |
|
|
|
prerequisite: you need to have [t5-gqa fork of transformers installed](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan#testing), and accelerate. |
|
|
|
```py |
|
from transformers import pipeline |
|
|
|
pipe = pipeline( |
|
"text2text-generation", |
|
model="BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2", |
|
device_map="auto", |
|
) |
|
prompt = "Write me a python fn that demonstrates an advanced sorting algorithm" |
|
res = pipe( |
|
prompt, max_new_tokens=384, num_beams=4, early_stopping=True, repetition_penalty=1.1 |
|
) |
|
print(res[0]["generated_text"]) |
|
``` |
|
|
|
## Quick eval |
|
|
|
Quick eval for: `BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2` |
|
|
|
|
|
hf (pretrained=BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8 |
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |
|
|-------------|------:|------|-----:|--------|---|-----:|---|------| |
|
|boolq | 2|none | 0|acc |↑ |0.6364|± |0.0084| |
|
|openbookqa | 1|none | 0|acc |↑ |0.1480|± |0.0159| |
|
| | |none | 0|acc_norm|↑ |0.2860|± |0.0202| |
|
|piqa | 1|none | 0|acc |↑ |0.6083|± |0.0114| |
|
| | |none | 0|acc_norm|↑ |0.6132|± |0.0114| |
|
|social_iqa | 0|none | 0|acc |↑ |0.3854|± |0.0110| |
|
|tinyArc | 0|none | 25|acc_norm|↑ |0.3122|± | N/A| |
|
|tinyHellaswag| 0|none | 10|acc_norm|↑ |0.3356|± | N/A| |
|
|tinyMMLU | 0|none | 0|acc_norm|↑ |0.2793|± | N/A| |
|
|winogrande | 1|none | 0|acc |↑ |0.5201|± |0.0140| |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 17868 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Use paged_ademamix_32bit and the args are: |
|
No additional optimizer arguments |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.02 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| 1.4008 | 0.2534 | 1000 | 1.4020 | 91375832 | |
|
| 1.3456 | 0.5068 | 2000 | 1.3669 | 182939052 | |
|
| 1.3437 | 0.7602 | 3000 | 1.3378 | 274855796 | |