pszemraj's picture
Update README.md
a1ec0ab verified
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1
tags:
- gqa
- t5
- instruct
datasets:
- pszemraj/infinity-instruct-7m-T2T_en
pipeline_tag: text2text-generation
---
# tFINE-680m-e32-d16-infinity_instruct-L2
this is an instruction-tuned version of a pretrained t5 with GQA.
## Model description
This model is a fine-tuned version of [BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1) on the pszemraj/infinity-instruct-7m-T2T_en dataset (config `deduped-L2`).
It achieves the following results on the evaluation set:
- Loss: 1.3139
- Num Input Tokens Seen: 361724696
## usage
prerequisite: you need to have [t5-gqa fork of transformers installed](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan#testing), and accelerate.
```py
from transformers import pipeline
pipe = pipeline(
"text2text-generation",
model="BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2",
device_map="auto",
)
prompt = "Write me a python fn that demonstrates an advanced sorting algorithm"
res = pipe(
prompt, max_new_tokens=384, num_beams=4, early_stopping=True, repetition_penalty=1.1
)
print(res[0]["generated_text"])
```
## Quick eval
Quick eval for: `BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2`
hf (pretrained=BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|-------------|------:|------|-----:|--------|---|-----:|---|------|
|boolq | 2|none | 0|acc |↑ |0.6364|± |0.0084|
|openbookqa | 1|none | 0|acc |↑ |0.1480|± |0.0159|
| | |none | 0|acc_norm|↑ |0.2860|± |0.0202|
|piqa | 1|none | 0|acc |↑ |0.6083|± |0.0114|
| | |none | 0|acc_norm|↑ |0.6132|± |0.0114|
|social_iqa | 0|none | 0|acc |↑ |0.3854|± |0.0110|
|tinyArc | 0|none | 25|acc_norm|↑ |0.3122|± | N/A|
|tinyHellaswag| 0|none | 10|acc_norm|↑ |0.3356|± | N/A|
|tinyMMLU | 0|none | 0|acc_norm|↑ |0.2793|± | N/A|
|winogrande | 1|none | 0|acc |↑ |0.5201|± |0.0140|
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17868
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 8
- optimizer: Use paged_ademamix_32bit and the args are:
No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| 1.4008 | 0.2534 | 1000 | 1.4020 | 91375832 |
| 1.3456 | 0.5068 | 2000 | 1.3669 | 182939052 |
| 1.3437 | 0.7602 | 3000 | 1.3378 | 274855796 |