Qwen2.5-VL-32B-Instruct-FP8-Dynamic

Model Overview

  • Model Architecture: Qwen2.5-VL-72B-Instruct
    • Input: Vision-Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 2/24/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of Qwen/Qwen2.5-VL-32B-Instruct.

Model Optimizations

This model was obtained by quantizing the weights of Qwen/Qwen2.5-VL-32B-Instruct to FP8 data type, ready for inference with vLLM >= 0.5.2.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)

# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Downloads last month
0
Safetensors
Model size
33.5B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BCCard/Qwen2.5-VL-32B-Instruct-FP8-Dynamic

Unable to build the model tree, the base model loops to the model itself. Learn more.