SentenceTransformer based on B0ketto/tmp_trainer
This is a sentence-transformers model finetuned from B0ketto/tmp_trainer. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: B0ketto/tmp_trainer
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'For children, it is bad to grow up in a polygamous family.',
'Polygamous families tend to have more children.',
'This threatens the idea of true democracy.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 65,698 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 7 tokens
- mean: 25.0 tokens
- max: 130 tokens
- min: 6 tokens
- mean: 31.05 tokens
- max: 130 tokens
- 0: ~55.50%
- 1: ~44.50%
- Samples:
sentence1 sentence2 label Public opinion favors euthanasia which suggests some support for a right to die.
Europeans generally support euthanasia. For example, more than 70% of citizens of Spain, Germany, France and Britain are in favor.
1
Public opinion favors euthanasia which suggests some support for a right to die.
In the US, support for assisted suicide has risen to 69% acceptance rate in the last few decades.
1
Public opinion favors euthanasia which suggests some support for a right to die.
The young and healthy that are asked in polls cannot imagine a situation of disability. This, so the criticism goes, blurs their image of euthanasia.
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0609 | 500 | 0.0256 |
0.1218 | 1000 | 0.0257 |
0.1826 | 1500 | 0.0263 |
0.2435 | 2000 | 0.0291 |
0.3044 | 2500 | 0.0276 |
0.3653 | 3000 | 0.0304 |
0.4262 | 3500 | 0.0297 |
0.4870 | 4000 | 0.0332 |
0.5479 | 4500 | 0.033 |
0.6088 | 5000 | 0.0328 |
0.6697 | 5500 | 0.0328 |
0.7305 | 6000 | 0.0331 |
0.7914 | 6500 | 0.0321 |
0.8523 | 7000 | 0.0326 |
0.9132 | 7500 | 0.0329 |
0.9741 | 8000 | 0.0318 |
1.0349 | 8500 | 0.0323 |
1.0958 | 9000 | 0.0321 |
1.1567 | 9500 | 0.0321 |
1.2176 | 10000 | 0.0322 |
1.2785 | 10500 | 0.0321 |
1.3393 | 11000 | 0.0317 |
1.4002 | 11500 | 0.0317 |
1.4611 | 12000 | 0.0315 |
1.5220 | 12500 | 0.0318 |
1.5829 | 13000 | 0.0319 |
1.6437 | 13500 | 0.0315 |
1.7046 | 14000 | 0.0313 |
1.7655 | 14500 | 0.0294 |
1.8264 | 15000 | 0.0292 |
1.8873 | 15500 | 0.0278 |
1.9481 | 16000 | 0.0286 |
2.0090 | 16500 | 0.0274 |
2.0699 | 17000 | 0.0273 |
2.1308 | 17500 | 0.027 |
2.1916 | 18000 | 0.0271 |
2.2525 | 18500 | 0.0265 |
2.3134 | 19000 | 0.0262 |
2.3743 | 19500 | 0.0254 |
2.4352 | 20000 | 0.0255 |
2.4960 | 20500 | 0.0256 |
2.5569 | 21000 | 0.0252 |
2.6178 | 21500 | 0.0246 |
2.6787 | 22000 | 0.0251 |
2.7396 | 22500 | 0.0238 |
2.8004 | 23000 | 0.025 |
2.8613 | 23500 | 0.0247 |
2.9222 | 24000 | 0.0252 |
2.9831 | 24500 | 0.0237 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 3
Model tree for B0ketto/tmp_trainer
Unable to build the model tree, the base model loops to the model itself. Learn more.