Safetensors
Chinese
English
qwen2
Files changed (1) hide show
  1. README.md +76 -65
README.md CHANGED
@@ -1,66 +1,77 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - Azure99/blossom-v6-sft-stage1
5
- - Azure99/blossom-v6-sft-stage2
6
- language:
7
- - zh
8
- - en
9
- base_model:
10
- - Qwen/Qwen2.5-32B
11
- ---
12
- # **BLOSSOM-V6-32B**
13
-
14
- [💻Github](https://github.com/Azure99/BlossomLM) • [🚀Blossom Chat Demo](https://blossom-chat.com/)
15
-
16
- ### Introduction
17
-
18
- Blossom is a powerful open-source conversational large language model that provides reproducible post-training data, dedicated to delivering an open, powerful, and cost-effective locally accessible general-purpose model for everyone.
19
-
20
- | Chat Model | Resource | Base Model |
21
- | ------------------------------------------------------------ | ------------------------------------------------------------ | ----------- |
22
- | [Blossom-V6-32B](https://huggingface.co/Azure99/Blossom-V6-32B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-32B-AWQ-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-32B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-32B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:32b) | Qwen2.5-32B |
23
- | [Blossom-V6-14B](https://huggingface.co/Azure99/Blossom-V6-14B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-14B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-14B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-14B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:14b) | Qwen2.5-14B |
24
- | [Blossom-V6-7B](https://huggingface.co/Azure99/Blossom-V6-7B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-7B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-7B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-7B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:7b) | Qwen2.5-7B |
25
-
26
- You can find the training data here: [Blossom-V6-SFT-Stage1](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage1) (1 epoch)、[Blossom-V6-SFT-Stage2](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage2) (3 epoch)。
27
-
28
- ### **Data Synthesis Workflow Overview**
29
-
30
- Primarily employs three cost-effective models—Yi-Lightning, Deepseek-V2.5, and Doubao-Pro-32K (denoted as A, B, C)—to regenerate responses under different scenarios using tailored synthesis strategies.
31
-
32
- For example:
33
-
34
- - In objective scenarios like mathematics (where answers are unique), Model A first generates responses as a "teacher." If reference answers exist in the source data, Model B verifies the correctness of A's responses against them. If no reference answers exist, Model C generates a second response, and Model B checks consistency between A and C's outputs. Inconsistent responses are filtered out.
35
- - For subjective scenarios, three models cross-evaluate each other. For instance, Models A and B generate responses to a question, and Model C evaluates which is better. The superior response may be retained as training data or used for preference data construction. To mitigate model bias, roles (respondent/evaluator) are randomly assigned to A, B, and C in each instance.
36
-
37
- Additional rule-based filtering is applied, such as:
38
-
39
- - N-Gram filtering to remove data with many repetitions.
40
- - Discarding questions containing toxic content that triggers teacher model refusals.
41
-
42
- Further technical details will be released in the future. The data is synthesized by the [🌸BlossomData](https://github.com/Azure99/BlossomData) framework.
43
-
44
- ### Inference
45
-
46
- ```python
47
- from transformers import AutoModelForCausalLM, AutoTokenizer
48
-
49
- MODEL = "Azure99/Blossom-V6-32B"
50
-
51
- model = AutoModelForCausalLM.from_pretrained(MODEL)
52
- tokenizer = AutoTokenizer.from_pretrained(MODEL)
53
-
54
- messages = [
55
- {"role": "user", "content": "北京有什么好吃的"}
56
- ]
57
-
58
- formatted_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
59
- input_ids = tokenizer([formatted_input], return_tensors="pt").to(model.device).input_ids
60
- generated_ids = model.generate(input_ids, max_new_tokens=512)
61
- generated_ids = [
62
- output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
63
- ]
64
-
65
- print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
 
 
 
 
 
 
 
 
 
 
 
66
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - Azure99/blossom-v6-sft-stage1
5
+ - Azure99/blossom-v6-sft-stage2
6
+ language:
7
+ - zho
8
+ - eng
9
+ - fra
10
+ - spa
11
+ - por
12
+ - deu
13
+ - ita
14
+ - rus
15
+ - jpn
16
+ - kor
17
+ - vie
18
+ - tha
19
+ - ara
20
+ base_model:
21
+ - Qwen/Qwen2.5-32B
22
+ ---
23
+ # **BLOSSOM-V6-32B**
24
+
25
+ [💻Github](https://github.com/Azure99/BlossomLM) • [🚀Blossom Chat Demo](https://blossom-chat.com/)
26
+
27
+ ### Introduction
28
+
29
+ Blossom is a powerful open-source conversational large language model that provides reproducible post-training data, dedicated to delivering an open, powerful, and cost-effective locally accessible general-purpose model for everyone.
30
+
31
+ | Chat Model | Resource | Base Model |
32
+ | ------------------------------------------------------------ | ------------------------------------------------------------ | ----------- |
33
+ | [Blossom-V6-32B](https://huggingface.co/Azure99/Blossom-V6-32B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-32B-AWQ-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-32B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-32B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:32b) | Qwen2.5-32B |
34
+ | [Blossom-V6-14B](https://huggingface.co/Azure99/Blossom-V6-14B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-14B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-14B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-14B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:14b) | Qwen2.5-14B |
35
+ | [Blossom-V6-7B](https://huggingface.co/Azure99/Blossom-V6-7B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-7B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-7B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-7B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:7b) | Qwen2.5-7B |
36
+
37
+ You can find the training data here: [Blossom-V6-SFT-Stage1](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage1) (1 epoch)、[Blossom-V6-SFT-Stage2](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage2) (3 epoch)。
38
+
39
+ ### **Data Synthesis Workflow Overview**
40
+
41
+ Primarily employs three cost-effective models—Yi-Lightning, Deepseek-V2.5, and Doubao-Pro-32K (denoted as A, B, C)—to regenerate responses under different scenarios using tailored synthesis strategies.
42
+
43
+ For example:
44
+
45
+ - In objective scenarios like mathematics (where answers are unique), Model A first generates responses as a "teacher." If reference answers exist in the source data, Model B verifies the correctness of A's responses against them. If no reference answers exist, Model C generates a second response, and Model B checks consistency between A and C's outputs. Inconsistent responses are filtered out.
46
+ - For subjective scenarios, three models cross-evaluate each other. For instance, Models A and B generate responses to a question, and Model C evaluates which is better. The superior response may be retained as training data or used for preference data construction. To mitigate model bias, roles (respondent/evaluator) are randomly assigned to A, B, and C in each instance.
47
+
48
+ Additional rule-based filtering is applied, such as:
49
+
50
+ - N-Gram filtering to remove data with many repetitions.
51
+ - Discarding questions containing toxic content that triggers teacher model refusals.
52
+
53
+ Further technical details will be released in the future. The data is synthesized by the [🌸BlossomData](https://github.com/Azure99/BlossomData) framework.
54
+
55
+ ### Inference
56
+
57
+ ```python
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer
59
+
60
+ MODEL = "Azure99/Blossom-V6-32B"
61
+
62
+ model = AutoModelForCausalLM.from_pretrained(MODEL)
63
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
64
+
65
+ messages = [
66
+ {"role": "user", "content": "北京有什么好吃的"}
67
+ ]
68
+
69
+ formatted_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
70
+ input_ids = tokenizer([formatted_input], return_tensors="pt").to(model.device).input_ids
71
+ generated_ids = model.generate(input_ids, max_new_tokens=512)
72
+ generated_ids = [
73
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
74
+ ]
75
+
76
+ print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
77
  ```