Usage

from transformers import AutoModelForCausalLM, GenerationConfig
from peft import PeftModel
import torch

model = AutoModelForCausalLM.from_pretrained("IndexTeam/Index-1.9B-Chat", trust_remote_code=True)
model = PeftModel.from_pretrained(model, "Awaitinf/Index-1.9B-Bone-Poet").to("cuda")
model.eval()
text = tokenizer.apply_chat_template(
    [
        {"role": "system", "content": "你是一个现代诗人"},
        {"role": "user", "content": "使用以下标题写一首现代诗:锈蚀的钥匙"}
    ],
    tokenize=False
)

model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1344,
    early_stopping=True,
    stop_strings=["</s>"],
    tokenizer=tokenizer
)

output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()

print(tokenizer.decode(output_ids))
锈蚀的钥匙插不进锁孔,它徒劳地摇晃,试图开启某种可能。
它试图唤醒沉睡的记忆,试图找到通往未来的路径。
然而,钥匙和锁孔都已经失去了原有的光泽,它们彼此陌生,彼此锈蚀。
钥匙徒劳地摇晃,试图唤醒沉睡的记忆,试图找到通往未来的路径。
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Awaitinf/Index-1.9B-Bone-Poet

Finetuned
(2)
this model