import torch
from PIL import Image as PILImage
from transformers import AutoImageProcessor, SiglipForImageClassification
MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
# Device: Use GPU if available, otherwise CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load Model and Processor
try:
print(f"Loading processor from: {MODEL_IDENTIFIER}")
processor = AutoImageProcessor.from_pretrained(MODEL_IDENTIFIER)
print(f"Loading model from: {MODEL_IDENTIFIER}")
model = SiglipForImageClassification.from_pretrained(MODEL_IDENTIFIER)
model.to(device)
model.eval()
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading model or processor: {e}")
exit()
# Load and Preprocess the Image
IMAGE_PATH = r"/content/images.jpg"
try:
print(f"Loading image: {IMAGE_PATH}")
image = PILImage.open(IMAGE_PATH).convert("RGB")
except FileNotFoundError:
print(f"Error: Image file not found at {IMAGE_PATH}")
exit()
except Exception as e:
print(f"Error opening image: {e}")
exit()
print("Preprocessing image...")
# Use the processor to prepare the image for the model
inputs = processor(images=image, return_tensors="pt").to(device)
# Perform Inference
print("Running inference...")
with torch.no_grad(): # Disable gradient calculations for inference
outputs = model(**inputs)
logits = outputs.logits
# Interpret the Results
# Get the index of the highest logit score -> this is the predicted class ID
predicted_class_idx = logits.argmax(-1).item()
# Use the model's config to map the ID back to the label string ('ai' or 'hum')
predicted_label = model.config.id2label[predicted_class_idx]
# Optional: Get probabilities using softmax
probabilities = torch.softmax(logits, dim=-1)
predicted_prob = probabilities[0, predicted_class_idx].item()
print("-" * 30)
print(f"Image: {IMAGE_PATH}")
print(f"Predicted Label: {predicted_label}")
print(f"Confidence Score: {predicted_prob:.4f}")
print("-" * 30)
# You can also print the scores for all classes:
print("Scores per class:")
for i, label in model.config.id2label.items():
print(f" - {label}: {probabilities[0, i].item():.4f}")
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.