alkinun's picture

alkinun

AtAndDev

AI & ML interests

LLMs, Alignment, Merging, Unsloth, DPO, SFT, ORPO, SPIN..

Recent Activity

Organizations

ESPnet's profile picture CVPR Demo Track's profile picture BigScience Biomedical Datasets's profile picture ONNXConfig for all's profile picture video-p2p-library's profile picture Gradio-Themes-Party's profile picture Gradio-Blocks-Party's profile picture scikit-learn's profile picture Open-Source AI Meetup's profile picture AMD's profile picture lora concepts library's profile picture OpenBuddy Community's profile picture ECCV 2022's profile picture Kornia AI's profile picture Tune a video concepts library's profile picture SIGGRAPH 2022's profile picture Interspeech2022's profile picture Stable Diffusion concepts library's profile picture SIGGRAPH Asia 2022 Demos's profile picture Stable Diffusion Dreambooth Concepts Library's profile picture Musika's profile picture Blog-explorers's profile picture OpenSky's profile picture ICCV2023's profile picture ICML2023's profile picture huggingPartyParis's profile picture Multi๐Ÿค–Transformers's profile picture Team Tonic's profile picture That Time I got Reincarnated as a Hugging Face Organization's profile picture ZeroGPU Explorers's profile picture Pirates Party for all software open source's profile picture MLX Community's profile picture recipe research's profile picture Narra's profile picture Social Post Explorers's profile picture Cognitive Computations's profile picture M4-ai's profile picture Spinner-GPT-4's profile picture Dev Mode Explorers's profile picture Stable Diffusion Community (Unofficial, Non-profit)'s profile picture Hugging Face Discord Community's profile picture Nerdy Face's profile picture OpenEndedLM's profile picture Data Is Better Together Contributor's profile picture

AtAndDev's activity

liked a Space about 9 hours ago
reacted to as-cle-bert's post with โค๏ธ about 9 hours ago
view post
Post
821
Hi HuggingFacers!๐Ÿคถ๐Ÿผ

As my last 2024 project, I've dropped a Discord Bot that knows a lot about Pokemons๐Ÿฆ‹

GitHub ๐Ÿ‘‰ https://github.com/AstraBert/Pokemon-Bot
Demo Space ๐Ÿ‘‰ as-cle-bert/pokemon-bot

The bot integrates:
- Chat features (Cohere's Command-R) with RAG functionalities (hybrid search and reranking with Qdrant) and chat memory (managed through PostgreSQL) to produce information about Pokemons
- Image-based search to identify Pokemons from their images (via Qdrant)
- Card package random extraction and description

HuggingFace๐Ÿค—, as usual, plays the most important role in the application stack, with the following models:

- sentence-transformers/LaBSE
- prithivida/Splade_PP_en_v1
- facebook/dinov2-large

And datasets:

- Karbo31881/Pokemon_images
- wanghaofan/pokemon-wiki-captions
- TheFusion21/PokemonCards

Have fun!๐Ÿ•
reacted to sayakpaul's post with ๐Ÿš€๐Ÿ”ฅ about 9 hours ago
view post
Post
2814
Commits speak louder than words ๐Ÿคช

* 4 new video models
* Multiple image models, including SANA & Flux Control
* New quantizers -> GGUF & TorchAO
* New training scripts

Enjoy this holiday-special Diffusers release ๐Ÿค—
Notes: https://github.com/huggingface/diffusers/releases/tag/v0.32.0
reacted to InferenceIllusionist's post with ๐Ÿ”ฅ 4 days ago
view post
Post
1861
MilkDropLM-32b-v0.3: Unlocking Next-Gen Visuals โœจ

Stoked to release the latest iteration of our MilkDropLM project! This new release is based on the powerful Qwen2.5-Coder-32B-Instruct model using the same great dataset that powered our 7b model.

What's new?

- Genome Unlocked: Deeper understanding of preset relationships for more accurate and creative generations.

- Preset Revival: Breathe new life into old presets with our upgraded model!

- Loop-B-Gone: Say goodbye to pesky loops and hello to smooth generation.

- Natural Chats: Engage in more natural sounding conversations with our LLM than ever before.

Released under Apache 2.0, because sharing is caring!

Try it out: InferenceIllusionist/MilkDropLM-32b-v0.3

Shoutout to @superwatermelon for his invaluable insights and collab, and to all those courageous members in the community that have tested and provided feedback before!
reacted to suayptalha's post with โค๏ธ๐Ÿ‘๐Ÿ”ฅ 4 days ago
view post
Post
1556
๐Ÿš€ FastLlama Series is Live!

๐Ÿฆพ Experience faster, lighter, and smarter language models! The new FastLlama makes Meta's LLaMA models work with smaller file sizes, lower system requirements, and higher performance. The model supports 8 languages, including English, German, and Spanish.

๐Ÿค– Built on the LLaMA 3.2-1B-Instruct model, fine-tuned with Hugging Face's SmolTalk and MetaMathQA-50k datasets, and powered by LoRA (Low-Rank Adaptation) for groundbreaking mathematical reasoning.

๐Ÿ’ป Its compact size makes it versatile for a wide range of applications!
๐Ÿ’ฌ Chat with the model:
๐Ÿ”— Chat Link: suayptalha/Chat-with-FastLlama
๐Ÿ”— Model Link: suayptalha/FastLlama-3.2-1B-Instruct
reacted to anton-l's post with ๐Ÿ”ฅ๐Ÿš€ 5 days ago
view post
Post
1973
Introducing ๐Ÿ“๐…๐ข๐ง๐ž๐Œ๐š๐ญ๐ก: the best public math pre-training dataset with 50B+ tokens!
HuggingFaceTB/finemath

Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.

We build the dataset by:
๐Ÿ› ๏ธ carefully extracting math data from Common Crawl;
๐Ÿ”Ž iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.

We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.

We hope this helps advance the performance of LLMs on math and reasoning! ๐Ÿš€
Weโ€™re also releasing all the ablation models as well as the evaluation code.

HuggingFaceTB/finemath-6763fb8f71b6439b653482c2
reacted to etemiz's post with ๐Ÿ˜”๐Ÿง ๐Ÿ‘€ 5 days ago
view post
Post
2268
As more synthetic datasets are made, we move slowly away from human alignment.
  • 4 replies
ยท
reacted to m-ric's post with ๐Ÿ‘ 5 days ago
view post
Post
2029
๐‡๐ฎ๐ ๐ ๐ข๐ง๐  ๐…๐š๐œ๐ž ๐ซ๐ž๐ฅ๐ž๐š๐ฌ๐ž๐ฌ ๐๐ข๐œ๐จ๐ญ๐ซ๐จ๐ง, ๐š ๐ฆ๐ข๐œ๐ซ๐จ๐ฌ๐œ๐จ๐ฉ๐ข๐œ ๐ฅ๐ข๐› ๐ญ๐ก๐š๐ญ ๐ฌ๐จ๐ฅ๐ฏ๐ž๐ฌ ๐‹๐‹๐Œ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐Ÿ’๐ƒ ๐ฉ๐š๐ซ๐š๐ฅ๐ฅ๐ž๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐Ÿฅณ

๐Ÿ•ฐ๏ธ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.

๐Ÿ‘ด๐Ÿป If they had needed all this time, we would have GPU stories from the time of Pharaoh ๐“‚€: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "

๐Ÿ› ๏ธ But instead, they just parallelized the training on 24k H100s, which made it take just a few months.
This required parallelizing across 4 dimensions: data, tensor, context, pipeline.
And it is infamously hard to do, making for bloated code repos that hold together only by magic.

๐Ÿค ๐—•๐˜‚๐˜ ๐—ป๐—ผ๐˜„ ๐˜„๐—ฒ ๐—ฑ๐—ผ๐—ป'๐˜ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐—ต๐˜‚๐—ด๐—ฒ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐˜€ ๐—ฎ๐—ป๐˜†๐—บ๐—ผ๐—ฟ๐—ฒ! Instead of building mega-training codes, Hugging Face colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry.
And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!

โšก ๐—œ๐˜'๐˜€ ๐˜๐—ถ๐—ป๐˜†, ๐˜†๐—ฒ๐˜ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น:
Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)

Go take a look ๐Ÿ‘‰ https://github.com/huggingface/picotron/tree/main/picotron
  • 1 reply
ยท