L-MChat-7b / README.md
Artples's picture
Update README.md
1ffea9e verified
|
raw
history blame
1.78 kB
metadata
tags:
  - merge
  - OpenPipe/mistral-ft-optimized-1227
  - Nexusflow/Starling-LM-7B-beta
base_model:
  - OpenPipe/mistral-ft-optimized-1227
  - Nexusflow/Starling-LM-7B-beta
license: apache-2.0

M-LChat-7b

M-LChat-7b is a merge of the following models using:

Configuration

slices:
  - sources:
      - model: OpenPipe/mistral-ft-optimized-1227
        layer_range: [0, 32]
      - model: Nexusflow/Starling-LM-7B-beta
        layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1227
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Artples/M-LChat-7b"
messages = [{GPT4 Correct User: What can i do if a lama is in my porch?<|end_of_turn|>GPT4 Correct Assistant:}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

How?

Usage of LazyMergekit on a T4.