ht-finbert-cls-v5_ftis_noPretrain_tdso

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7215
  • Accuracy: 0.8960
  • Macro F1: 0.7522

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6725
  • training_steps: 134500

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
54.1267 1.0002 100 42.4539 0.0693 0.0340
20.8339 2.0005 200 75.1536 0.1443 0.0557
8.6862 4.0002 300 105.8607 0.4400 0.1239
6.9579 5.0004 400 132.3561 0.5393 0.1544
6.3137 7.0002 500 163.3538 0.5817 0.1790
5.7884 8.0004 600 149.1104 0.6043 0.1961
5.238 10.0001 700 149.0267 0.6232 0.2087
4.6053 11.0004 800 122.6960 0.6450 0.2278
3.9789 13.0001 900 88.3309 0.6608 0.2490
3.4193 14.0004 1000 70.7087 0.6655 0.2566
2.9712 16.0001 1100 53.3170 0.6815 0.2796
2.5305 17.0003 1200 36.2476 0.7014 0.3222
2.3318 19.0001 1300 26.5832 0.7201 0.3406
2.04 20.0003 1400 19.7882 0.7461 0.3732
1.8635 22.0000 1500 18.2478 0.7632 0.4002
1.7301 23.0003 1600 12.3389 0.7779 0.4322
1.5551 24.0005 1700 9.3268 0.7815 0.4542
1.4405 26.0002 1800 9.2790 0.7954 0.4642
1.4124 27.0005 1900 7.5042 0.7902 0.4744
1.265 29.0002 2000 6.2492 0.7913 0.4995
1.2012 30.0004 2100 6.2005 0.8002 0.5169
1.1371 32.0002 2200 5.8517 0.8080 0.5313
1.0514 33.0004 2300 5.5730 0.8110 0.5412
1.0293 35.0001 2400 4.6457 0.8153 0.5503
0.9164 36.0004 2500 4.8986 0.8244 0.5791
0.8696 38.0001 2600 5.2707 0.8242 0.5853
0.8678 39.0004 2700 5.4791 0.8199 0.5702
0.817 41.0001 2800 5.8519 0.8276 0.5881
0.7781 42.0003 2900 5.7369 0.8361 0.6065
0.7561 44.0001 3000 6.8293 0.8322 0.5961
0.7016 45.0003 3100 6.5144 0.8343 0.6086
0.7073 47.0000 3200 6.8592 0.8387 0.6133
0.6632 48.0003 3300 6.8253 0.8402 0.6156
0.6415 49.0005 3400 7.3926 0.8440 0.6237
0.6284 51.0002 3500 8.3232 0.8490 0.6307
0.6271 52.0005 3600 8.3714 0.8462 0.6354
0.6024 54.0002 3700 7.8233 0.8496 0.6374
0.5716 55.0004 3800 8.6780 0.8491 0.6344
0.5656 57.0002 3900 8.8122 0.8523 0.6446
0.5519 58.0004 4000 7.9019 0.8485 0.6443
0.5383 60.0001 4100 8.2911 0.8525 0.6447
0.5225 61.0004 4200 8.9799 0.8580 0.6595
0.5166 63.0001 4300 9.7411 0.8562 0.6523
0.5067 64.0004 4400 10.2261 0.8612 0.6616
0.5083 66.0001 4500 10.1360 0.8607 0.6669
0.4822 67.0003 4600 10.8119 0.8633 0.6696
0.478 69.0001 4700 12.0300 0.8601 0.6650
0.468 70.0003 4800 10.7509 0.8601 0.6679
0.4786 72.0000 4900 11.1814 0.8606 0.6688
0.4542 73.0003 5000 11.7393 0.8686 0.6788
0.4471 74.0005 5100 11.8721 0.8661 0.6778
0.4425 76.0002 5200 12.2049 0.8681 0.6829
0.4378 77.0005 5300 10.3071 0.8684 0.6814
0.441 79.0002 5400 12.7758 0.8656 0.6875
0.4218 80.0004 5500 13.9862 0.8695 0.6838
0.4237 82.0002 5600 11.4036 0.8681 0.6824
0.4261 83.0004 5700 12.3810 0.8685 0.6849
0.4189 85.0001 5800 10.9566 0.8703 0.6840
0.4163 86.0004 5900 11.9092 0.8658 0.6862
0.4062 88.0001 6000 10.6187 0.8748 0.7032
0.4054 89.0004 6100 11.1740 0.8753 0.6960
0.3989 91.0001 6200 10.6474 0.8748 0.6953
0.4013 92.0003 6300 11.6176 0.8754 0.7027
0.3905 94.0001 6400 10.2454 0.8753 0.7045
0.3826 95.0003 6500 12.9530 0.8729 0.6963
0.3971 97.0000 6600 11.5349 0.8716 0.6941
0.3878 98.0003 6700 10.0413 0.8744 0.7073
0.3875 99.0005 6800 9.9055 0.8734 0.7015
0.3761 101.0002 6900 10.3418 0.8789 0.7061
0.3774 102.0005 7000 10.1067 0.8806 0.7090
0.3825 104.0002 7100 8.3686 0.8806 0.7144
0.3876 105.0004 7200 6.3883 0.8724 0.6980
0.3852 107.0002 7300 9.0841 0.8739 0.7034
0.3767 108.0004 7400 7.3012 0.8813 0.7106
0.3718 110.0001 7500 8.5764 0.8828 0.7159
0.3696 111.0004 7600 8.4104 0.8832 0.7154
0.3759 113.0001 7700 8.6043 0.8832 0.7155
0.3668 114.0004 7800 7.4298 0.8847 0.7246
0.3684 116.0001 7900 9.5902 0.8848 0.7244
0.363 117.0003 8000 6.8931 0.8838 0.7222
0.357 119.0001 8100 6.9210 0.8831 0.7257
0.3575 120.0003 8200 5.8508 0.8858 0.7287
0.35 122.0000 8300 6.6739 0.8851 0.7277
0.3518 123.0003 8400 6.6337 0.8850 0.7269
0.3539 124.0005 8500 6.4691 0.8851 0.7266
0.3478 126.0002 8600 5.6397 0.8865 0.7300
0.3451 127.0005 8700 5.6356 0.8880 0.7322
0.3415 129.0002 8800 4.4881 0.8871 0.7312
0.3425 130.0004 8900 4.5283 0.8854 0.7296
0.3484 132.0002 9000 4.5845 0.8811 0.7249
0.3767 133.0004 9100 4.6531 0.8795 0.7151
0.3704 135.0001 9200 3.2323 0.8747 0.7109
0.3663 136.0004 9300 4.3291 0.8773 0.7187
0.3553 138.0001 9400 3.9327 0.8841 0.7259
0.3423 139.0004 9500 4.4498 0.8860 0.7305
0.3433 141.0001 9600 4.7134 0.8794 0.7298
0.3424 142.0003 9700 4.5364 0.8863 0.7271
0.3576 144.0001 9800 3.2682 0.8843 0.7313
0.3422 145.0003 9900 2.8321 0.8844 0.7296
0.3412 147.0000 10000 4.3759 0.8890 0.7307
0.349 148.0003 10100 3.9332 0.8851 0.7280
0.3391 149.0005 10200 4.5327 0.8893 0.7355
0.3335 151.0002 10300 4.9665 0.8898 0.7368
0.3369 152.0005 10400 3.4262 0.8880 0.7363
0.3314 154.0002 10500 3.5618 0.8893 0.7368
0.3277 155.0004 10600 3.4955 0.8914 0.7393
0.326 157.0002 10700 3.0240 0.8900 0.7380
0.3266 158.0004 10800 2.4971 0.8895 0.7372
0.3254 160.0001 10900 2.9598 0.8879 0.7346
0.3249 161.0004 11000 3.1897 0.8910 0.7416
0.3247 163.0001 11100 3.0436 0.8897 0.7377
0.331 164.0004 11200 3.0063 0.8884 0.7356
0.3372 166.0001 11300 3.3399 0.8830 0.7247
0.3365 167.0003 11400 3.2443 0.8871 0.7314
0.3404 169.0001 11500 2.7850 0.8745 0.7107
0.3669 170.0003 11600 2.0442 0.8828 0.7278
0.3399 172.0000 11700 2.4131 0.8859 0.7352
0.33 173.0003 11800 2.5376 0.8850 0.7363
0.3209 174.0005 11900 2.9024 0.8932 0.7460
0.3181 176.0002 12000 3.0534 0.8935 0.7446
0.3167 177.0005 12100 2.8713 0.8931 0.7458
0.3149 179.0002 12200 3.1409 0.8911 0.7397
0.3168 180.0004 12300 2.7827 0.8927 0.7423
0.3154 182.0002 12400 2.9169 0.8938 0.7436
0.3143 183.0004 12500 2.7046 0.8927 0.7427
0.3175 185.0001 12600 3.0517 0.8904 0.7388
0.3473 186.0004 12700 2.5254 0.8668 0.7191
0.373 188.0001 12800 1.9765 0.8802 0.7184
0.335 189.0004 12900 2.3713 0.8882 0.7289
0.3308 191.0001 13000 2.3606 0.8891 0.7436
0.3272 192.0003 13100 2.3548 0.8907 0.7420
0.3138 194.0001 13200 2.3770 0.8858 0.7389
0.3148 195.0003 13300 2.4873 0.8950 0.7485
0.3104 197.0000 13400 2.6665 0.8949 0.7487
0.308 198.0003 13500 2.7137 0.8960 0.7522
0.3089 199.0005 13600 2.8533 0.8954 0.7502
0.3083 201.0002 13700 2.7738 0.8949 0.7473
0.3058 202.0005 13800 2.8489 0.8945 0.7490
0.3171 204.0002 13900 2.4588 0.8926 0.7478
0.312 205.0004 14000 2.1815 0.8930 0.7438
0.3102 207.0002 14100 2.3426 0.8928 0.7459
0.3074 208.0004 14200 2.4680 0.8914 0.7424
0.305 210.0001 14300 2.3430 0.8940 0.7440
0.3055 211.0004 14400 2.6109 0.8942 0.7492
0.3065 213.0001 14500 3.2677 0.8936 0.7400
0.3038 214.0004 14600 2.6056 0.8951 0.7500
0.3022 216.0001 14700 3.7801 0.8929 0.7465
0.3045 217.0003 14800 3.1071 0.8881 0.7453
0.3045 219.0001 14900 3.9928 0.8911 0.7454
0.3066 220.0003 15000 2.8048 0.8893 0.7415
0.3083 222.0000 15100 2.8299 0.8808 0.7369
0.3089 223.0003 15200 2.6550 0.8845 0.7384
0.3122 224.0005 15300 2.8834 0.8858 0.7403
0.3318 226.0002 15400 1.9369 0.8823 0.7328
0.3205 227.0005 15500 2.7083 0.8886 0.7431

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
0
Safetensors
Model size
131M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support