AriyanH22's picture
End of training
6bd0057 verified
|
raw
history blame
4.36 kB
metadata
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: frame_classification_longformer_earlystopping_2
    results: []

frame_classification_longformer_earlystopping_2

This model is a fine-tuned version of allenai/longformer-base-4096 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5698
  • Accuracy: 0.9317
  • F1: 0.9601
  • Precision: 0.9346
  • Recall: 0.9869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8651 1.0 1288 1.1520 0.8323 0.9085 0.8323 1.0
0.7998 2.0 2576 0.6925 0.9130 0.9495 0.9181 0.9832
0.6819 3.0 3864 0.4349 0.9255 0.9560 0.9404 0.9720
0.7033 4.0 5152 0.5836 0.9224 0.9547 0.9278 0.9832
0.757 5.0 6440 0.5795 0.9224 0.9544 0.9339 0.9757
0.6963 6.0 7728 0.5488 0.9317 0.9599 0.9393 0.9813
0.6656 7.0 9016 0.6232 0.9255 0.9564 0.9311 0.9832
0.6957 8.0 10304 0.6441 0.9255 0.9564 0.9311 0.9832
0.6852 9.0 11592 0.6009 0.9224 0.9548 0.9263 0.9851
0.6846 10.0 12880 0.5947 0.9255 0.9564 0.9311 0.9832
0.728 11.0 14168 0.5873 0.9224 0.9550 0.9219 0.9907
0.6456 12.0 15456 0.5781 0.9332 0.9609 0.9363 0.9869
0.662 13.0 16744 0.5128 0.9301 0.9588 0.9408 0.9776
0.6017 14.0 18032 0.6430 0.9177 0.9514 0.9351 0.9683
0.7525 15.0 19320 0.5631 0.9193 0.9522 0.9384 0.9664
0.6802 16.0 20608 0.5949 0.9224 0.9544 0.9339 0.9757
0.6489 17.0 21896 0.6540 0.9022 0.9416 0.9355 0.9478
0.707 18.0 23184 0.5921 0.9239 0.9554 0.9325 0.9795
0.7158 19.0 24472 0.6170 0.9255 0.9564 0.9311 0.9832
0.6264 20.0 25760 0.5303 0.9348 0.9617 0.9395 0.9851
0.6667 21.0 27048 0.6288 0.9255 0.9566 0.9281 0.9869
0.6648 22.0 28336 0.6579 0.9208 0.9540 0.9232 0.9869
0.6204 23.0 29624 0.5716 0.9301 0.9592 0.9330 0.9869
0.6693 24.0 30912 0.6138 0.9270 0.9575 0.9282 0.9888
0.6555 25.0 32200 0.6369 0.9255 0.9566 0.9281 0.9869
0.6446 26.0 33488 0.5609 0.9301 0.9591 0.9345 0.9851
0.6675 27.0 34776 0.5622 0.9301 0.9591 0.9361 0.9832
0.5946 28.0 36064 0.5740 0.9301 0.9591 0.9345 0.9851
0.5707 29.0 37352 0.5661 0.9317 0.9601 0.9346 0.9869
0.6703 30.0 38640 0.5698 0.9317 0.9601 0.9346 0.9869

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2