metadata
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
model-index:
- name: roberta-base-finetuned-ner-kmeans
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.955868544600939
- name: Recall
type: recall
value: 0.9614658103513412
- name: F1
type: f1
value: 0.9586590074394953
roberta-base-finetuned-ner-kmeans
This model is a fine-tuned version of ArBert/roberta-base-finetuned-ner on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0592
- Precision: 0.9559
- Recall: 0.9615
- F1: 0.9587
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.0248 | 1.0 | 878 | 0.0609 | 0.9507 | 0.9561 | 0.9534 |
0.0163 | 2.0 | 1756 | 0.0640 | 0.9515 | 0.9578 | 0.9546 |
0.0089 | 3.0 | 2634 | 0.0592 | 0.9559 | 0.9615 | 0.9587 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0