Merged-MM-praj
This model is a fine-tuned version of prajjwal1/bert-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5525
- Accuracy: 0.7777
- F1: 0.8749
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.0 | 50 | 0.6929 | 0.526 | 0.3813 |
No log | 0.0 | 100 | 0.6938 | 0.48 | 0.3125 |
No log | 0.01 | 150 | 0.6971 | 0.479 | 0.3103 |
No log | 0.01 | 200 | 0.6948 | 0.479 | 0.3103 |
No log | 0.01 | 250 | 0.6938 | 0.479 | 0.3103 |
No log | 0.01 | 300 | 0.6939 | 0.479 | 0.3103 |
No log | 0.01 | 350 | 0.6927 | 0.521 | 0.3587 |
No log | 0.02 | 400 | 0.6931 | 0.501 | 0.4988 |
No log | 0.02 | 450 | 0.6944 | 0.479 | 0.3103 |
0.6942 | 0.02 | 500 | 0.6954 | 0.479 | 0.3103 |
0.6942 | 0.02 | 550 | 0.6960 | 0.479 | 0.3103 |
0.6942 | 0.02 | 600 | 0.6934 | 0.486 | 0.3322 |
0.6942 | 0.02 | 650 | 0.6970 | 0.479 | 0.3103 |
0.6942 | 0.03 | 700 | 0.6929 | 0.535 | 0.4767 |
0.6942 | 0.03 | 750 | 0.6931 | 0.499 | 0.4609 |
0.6942 | 0.03 | 800 | 0.6952 | 0.479 | 0.3103 |
0.6942 | 0.03 | 850 | 0.6933 | 0.48 | 0.3160 |
0.6942 | 0.03 | 900 | 0.6979 | 0.479 | 0.3103 |
0.6942 | 0.04 | 950 | 0.6940 | 0.479 | 0.3103 |
0.6938 | 0.04 | 1000 | 0.6915 | 0.521 | 0.3569 |
0.6938 | 0.04 | 1050 | 0.6942 | 0.479 | 0.3103 |
0.6938 | 0.04 | 1100 | 0.6884 | 0.519 | 0.3630 |
0.6938 | 0.04 | 1150 | 0.6849 | 0.596 | 0.5817 |
0.6938 | 0.05 | 1200 | 0.6849 | 0.547 | 0.5131 |
0.6938 | 0.05 | 1250 | 0.6771 | 0.568 | 0.5502 |
0.6938 | 0.05 | 1300 | 0.6792 | 0.572 | 0.5558 |
0.6938 | 0.05 | 1350 | 0.6889 | 0.55 | 0.5161 |
0.6938 | 0.05 | 1400 | 0.6792 | 0.59 | 0.5828 |
0.6938 | 0.06 | 1450 | 0.6729 | 0.602 | 0.5987 |
0.6781 | 0.06 | 1500 | 0.6702 | 0.592 | 0.5822 |
0.6781 | 0.06 | 1550 | 0.6711 | 0.578 | 0.5633 |
0.6781 | 0.06 | 1600 | 0.6642 | 0.607 | 0.6024 |
0.6781 | 0.06 | 1650 | 0.6624 | 0.592 | 0.5819 |
0.6781 | 0.07 | 1700 | 0.6585 | 0.595 | 0.5883 |
0.6781 | 0.07 | 1750 | 0.6543 | 0.584 | 0.5740 |
0.6781 | 0.07 | 1800 | 0.6452 | 0.6 | 0.5926 |
0.6781 | 0.07 | 1850 | 0.6355 | 0.615 | 0.6106 |
0.6781 | 0.07 | 1900 | 0.6280 | 0.615 | 0.6090 |
0.6781 | 0.07 | 1950 | 0.6209 | 0.621 | 0.6139 |
0.6465 | 0.08 | 2000 | 0.6178 | 0.632 | 0.6247 |
0.6465 | 0.08 | 2050 | 0.6133 | 0.641 | 0.6303 |
0.6465 | 0.08 | 2100 | 0.6132 | 0.629 | 0.6218 |
0.6465 | 0.08 | 2150 | 0.6155 | 0.63 | 0.6289 |
0.6465 | 0.08 | 2200 | 0.5984 | 0.635 | 0.6322 |
0.6465 | 0.09 | 2250 | 0.6065 | 0.633 | 0.6102 |
0.6465 | 0.09 | 2300 | 0.5968 | 0.629 | 0.6063 |
0.6465 | 0.09 | 2350 | 0.5871 | 0.649 | 0.6411 |
0.6465 | 0.09 | 2400 | 0.5824 | 0.64 | 0.6218 |
0.6465 | 0.09 | 2450 | 0.5812 | 0.643 | 0.6390 |
0.6042 | 0.1 | 2500 | 0.5790 | 0.644 | 0.6355 |
0.6042 | 0.1 | 2550 | 0.5744 | 0.654 | 0.6507 |
0.6042 | 0.1 | 2600 | 0.5679 | 0.641 | 0.6292 |
0.6042 | 0.1 | 2650 | 0.5707 | 0.644 | 0.6311 |
0.6042 | 0.1 | 2700 | 0.5707 | 0.652 | 0.6439 |
0.6042 | 0.11 | 2750 | 0.5680 | 0.661 | 0.6569 |
0.6042 | 0.11 | 2800 | 0.5592 | 0.67 | 0.6684 |
0.6042 | 0.11 | 2850 | 0.5557 | 0.678 | 0.6758 |
0.6042 | 0.11 | 2900 | 0.5579 | 0.671 | 0.6690 |
0.6042 | 0.11 | 2950 | 0.5490 | 0.692 | 0.6909 |
0.5834 | 0.11 | 3000 | 0.5474 | 0.688 | 0.6858 |
0.5834 | 0.12 | 3050 | 0.5447 | 0.696 | 0.6902 |
0.5834 | 0.12 | 3100 | 0.5456 | 0.699 | 0.6985 |
0.5834 | 0.12 | 3150 | 0.5592 | 0.675 | 0.6628 |
0.5834 | 0.12 | 3200 | 0.5442 | 0.69 | 0.6856 |
0.5834 | 0.12 | 3250 | 0.5424 | 0.698 | 0.6974 |
0.5834 | 0.13 | 3300 | 0.5464 | 0.691 | 0.6907 |
0.5834 | 0.13 | 3350 | 0.5433 | 0.693 | 0.6922 |
0.5834 | 0.13 | 3400 | 0.5400 | 0.746 | 0.7461 |
0.5834 | 0.13 | 3450 | 0.5406 | 0.712 | 0.7091 |
0.5551 | 0.13 | 3500 | 0.5367 | 0.738 | 0.7376 |
0.5551 | 0.14 | 3550 | 0.5354 | 0.713 | 0.7091 |
0.5551 | 0.14 | 3600 | 0.5377 | 0.74 | 0.7400 |
0.5551 | 0.14 | 3650 | 0.5342 | 0.751 | 0.7506 |
0.5551 | 0.14 | 3700 | 0.5386 | 0.701 | 0.6992 |
0.5551 | 0.14 | 3750 | 0.5395 | 0.737 | 0.7368 |
0.5551 | 0.15 | 3800 | 0.5333 | 0.733 | 0.7330 |
0.5551 | 0.15 | 3850 | 0.5245 | 0.737 | 0.7371 |
0.5551 | 0.15 | 3900 | 0.5236 | 0.745 | 0.7451 |
0.5551 | 0.15 | 3950 | 0.5149 | 0.741 | 0.7400 |
0.5508 | 0.15 | 4000 | 0.5208 | 0.743 | 0.7422 |
0.5508 | 0.16 | 4050 | 0.5109 | 0.744 | 0.7440 |
0.5508 | 0.16 | 4100 | 0.5179 | 0.742 | 0.7398 |
0.5508 | 0.16 | 4150 | 0.5133 | 0.75 | 0.7499 |
0.5508 | 0.16 | 4200 | 0.5110 | 0.744 | 0.7416 |
0.5508 | 0.16 | 4250 | 0.5133 | 0.749 | 0.7476 |
0.5508 | 0.16 | 4300 | 0.5075 | 0.743 | 0.7410 |
0.5508 | 0.17 | 4350 | 0.5108 | 0.755 | 0.7544 |
0.5508 | 0.17 | 4400 | 0.5051 | 0.747 | 0.7465 |
0.5508 | 0.17 | 4450 | 0.5064 | 0.746 | 0.7455 |
0.5362 | 0.17 | 4500 | 0.5030 | 0.744 | 0.7441 |
0.5362 | 0.17 | 4550 | 0.5043 | 0.748 | 0.7476 |
0.5362 | 0.18 | 4600 | 0.5010 | 0.753 | 0.7531 |
0.5362 | 0.18 | 4650 | 0.4988 | 0.762 | 0.7616 |
0.5362 | 0.18 | 4700 | 0.4999 | 0.755 | 0.7548 |
0.5362 | 0.18 | 4750 | 0.5159 | 0.754 | 0.7529 |
0.5362 | 0.18 | 4800 | 0.4924 | 0.764 | 0.7639 |
0.5362 | 0.19 | 4850 | 0.4935 | 0.755 | 0.7549 |
0.5362 | 0.19 | 4900 | 0.4874 | 0.76 | 0.7601 |
0.5362 | 0.19 | 4950 | 0.4859 | 0.759 | 0.7591 |
0.5226 | 0.19 | 5000 | 0.4901 | 0.761 | 0.7610 |
0.5226 | 0.19 | 5050 | 0.4740 | 0.779 | 0.7790 |
0.5226 | 0.2 | 5100 | 0.4799 | 0.783 | 0.7831 |
0.5226 | 0.2 | 5150 | 0.4833 | 0.771 | 0.7698 |
0.5226 | 0.2 | 5200 | 0.4879 | 0.759 | 0.7561 |
0.5226 | 0.2 | 5250 | 0.4812 | 0.772 | 0.7719 |
0.5226 | 0.2 | 5300 | 0.4825 | 0.772 | 0.7715 |
0.5226 | 0.2 | 5350 | 0.4791 | 0.775 | 0.7744 |
0.5226 | 0.21 | 5400 | 0.4749 | 0.773 | 0.7729 |
0.5226 | 0.21 | 5450 | 0.4691 | 0.782 | 0.7811 |
0.5055 | 0.21 | 5500 | 0.4752 | 0.78 | 0.7791 |
0.5055 | 0.21 | 5550 | 0.4621 | 0.766 | 0.7645 |
0.5055 | 0.21 | 5600 | 0.4628 | 0.779 | 0.7790 |
0.5055 | 0.22 | 5650 | 0.4543 | 0.776 | 0.7760 |
0.5055 | 0.22 | 5700 | 0.4548 | 0.786 | 0.7861 |
0.5055 | 0.22 | 5750 | 0.4578 | 0.777 | 0.7763 |
0.5055 | 0.22 | 5800 | 0.4684 | 0.778 | 0.7780 |
0.5055 | 0.22 | 5850 | 0.4626 | 0.775 | 0.7751 |
0.5055 | 0.23 | 5900 | 0.4714 | 0.785 | 0.7850 |
0.5055 | 0.23 | 5950 | 0.4514 | 0.79 | 0.7896 |
0.4985 | 0.23 | 6000 | 0.4541 | 0.773 | 0.7731 |
0.4985 | 0.23 | 6050 | 0.4587 | 0.788 | 0.7876 |
0.4985 | 0.23 | 6100 | 0.4523 | 0.787 | 0.7867 |
0.4985 | 0.24 | 6150 | 0.4441 | 0.787 | 0.7870 |
0.4985 | 0.24 | 6200 | 0.4529 | 0.784 | 0.7841 |
0.4985 | 0.24 | 6250 | 0.4512 | 0.784 | 0.7840 |
0.4985 | 0.24 | 6300 | 0.4545 | 0.777 | 0.7757 |
0.4985 | 0.24 | 6350 | 0.4399 | 0.788 | 0.7874 |
0.4985 | 0.25 | 6400 | 0.4478 | 0.794 | 0.7939 |
0.4985 | 0.25 | 6450 | 0.4495 | 0.793 | 0.7930 |
0.4937 | 0.25 | 6500 | 0.4454 | 0.792 | 0.7913 |
0.4937 | 0.25 | 6550 | 0.4438 | 0.795 | 0.7950 |
0.4937 | 0.25 | 6600 | 0.4476 | 0.795 | 0.7948 |
0.4937 | 0.25 | 6650 | 0.4448 | 0.794 | 0.7939 |
0.4937 | 0.26 | 6700 | 0.4472 | 0.791 | 0.7911 |
0.4937 | 0.26 | 6750 | 0.4431 | 0.793 | 0.7924 |
0.4937 | 0.26 | 6800 | 0.4434 | 0.796 | 0.7958 |
0.4937 | 0.26 | 6850 | 0.4340 | 0.802 | 0.802 |
0.4937 | 0.26 | 6900 | 0.4502 | 0.786 | 0.7848 |
0.4937 | 0.27 | 6950 | 0.4349 | 0.797 | 0.7964 |
0.4826 | 0.27 | 7000 | 0.4348 | 0.79 | 0.7894 |
0.4826 | 0.27 | 7050 | 0.4321 | 0.788 | 0.7875 |
0.4826 | 0.27 | 7100 | 0.4300 | 0.787 | 0.7868 |
0.4826 | 0.27 | 7150 | 0.4346 | 0.78 | 0.7779 |
0.4826 | 0.28 | 7200 | 0.4246 | 0.802 | 0.8020 |
0.4826 | 0.28 | 7250 | 0.4273 | 0.793 | 0.7930 |
0.4826 | 0.28 | 7300 | 0.4346 | 0.79 | 0.7894 |
0.4826 | 0.28 | 7350 | 0.4358 | 0.789 | 0.7887 |
0.4826 | 0.28 | 7400 | 0.4368 | 0.788 | 0.7871 |
0.4826 | 0.29 | 7450 | 0.4426 | 0.784 | 0.7841 |
0.4756 | 0.29 | 7500 | 0.4312 | 0.802 | 0.8019 |
0.4756 | 0.29 | 7550 | 0.4303 | 0.795 | 0.7944 |
0.4756 | 0.29 | 7600 | 0.4391 | 0.792 | 0.7916 |
0.4756 | 0.29 | 7650 | 0.4325 | 0.793 | 0.7922 |
0.4756 | 0.29 | 7700 | 0.4283 | 0.793 | 0.7920 |
0.4756 | 0.3 | 7750 | 0.4271 | 0.799 | 0.7991 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Anwaarma/Merged-MM-praj
Base model
prajjwal1/bert-tiny