BP-S02andInt03
This model is a fine-tuned version of Anwaarma/BP-test4 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4031
- Accuracy: 0.82
- F1: 0.8097
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 13
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.0 | 50 | 1.1241 | 0.54 | 0.4220 |
No log | 0.01 | 100 | 0.8697 | 0.51 | 0.4402 |
No log | 0.01 | 150 | 0.7063 | 0.37 | 0.3740 |
No log | 0.02 | 200 | 0.6895 | 0.51 | 0.4184 |
No log | 0.02 | 250 | 0.6880 | 0.52 | 0.4467 |
No log | 0.02 | 300 | 0.6874 | 0.52 | 0.4778 |
No log | 0.03 | 350 | 0.6842 | 0.52 | 0.4778 |
No log | 0.03 | 400 | 0.6889 | 0.5 | 0.4491 |
No log | 0.04 | 450 | 0.6727 | 0.55 | 0.5398 |
0.7977 | 0.04 | 500 | 0.6617 | 0.59 | 0.5877 |
0.7977 | 0.04 | 550 | 0.6514 | 0.59 | 0.5877 |
0.7977 | 0.05 | 600 | 0.6597 | 0.59 | 0.5877 |
0.7977 | 0.05 | 650 | 0.6322 | 0.59 | 0.5877 |
0.7977 | 0.06 | 700 | 0.5898 | 0.57 | 0.5655 |
0.7977 | 0.06 | 750 | 0.5406 | 0.7 | 0.7015 |
0.7977 | 0.06 | 800 | 0.4813 | 0.8 | 0.7862 |
0.7977 | 0.07 | 850 | 0.4706 | 0.8 | 0.7862 |
0.7977 | 0.07 | 900 | 0.4743 | 0.79 | 0.7768 |
0.7977 | 0.08 | 950 | 0.4578 | 0.8 | 0.7862 |
0.5646 | 0.08 | 1000 | 0.4571 | 0.8 | 0.7862 |
0.5646 | 0.08 | 1050 | 0.4536 | 0.8 | 0.7862 |
0.5646 | 0.09 | 1100 | 0.4461 | 0.8 | 0.7862 |
0.5646 | 0.09 | 1150 | 0.4451 | 0.8 | 0.7862 |
0.5646 | 0.1 | 1200 | 0.4398 | 0.81 | 0.7956 |
0.5646 | 0.1 | 1250 | 0.4360 | 0.8 | 0.7862 |
0.5646 | 0.1 | 1300 | 0.4325 | 0.81 | 0.7956 |
0.5646 | 0.11 | 1350 | 0.4316 | 0.81 | 0.7956 |
0.5646 | 0.11 | 1400 | 0.4310 | 0.81 | 0.7956 |
0.5646 | 0.12 | 1450 | 0.4301 | 0.81 | 0.7956 |
0.4672 | 0.12 | 1500 | 0.4275 | 0.81 | 0.7956 |
0.4672 | 0.12 | 1550 | 0.4271 | 0.8 | 0.7862 |
0.4672 | 0.13 | 1600 | 0.4258 | 0.81 | 0.7956 |
0.4672 | 0.13 | 1650 | 0.4211 | 0.81 | 0.7956 |
0.4672 | 0.14 | 1700 | 0.4154 | 0.82 | 0.8097 |
0.4672 | 0.14 | 1750 | 0.4153 | 0.81 | 0.7956 |
0.4672 | 0.14 | 1800 | 0.4120 | 0.81 | 0.7956 |
0.4672 | 0.15 | 1850 | 0.4134 | 0.8 | 0.7862 |
0.4672 | 0.15 | 1900 | 0.4119 | 0.8 | 0.7862 |
0.4672 | 0.16 | 1950 | 0.4119 | 0.82 | 0.8097 |
0.4371 | 0.16 | 2000 | 0.4094 | 0.82 | 0.8097 |
0.4371 | 0.16 | 2050 | 0.4113 | 0.82 | 0.8097 |
0.4371 | 0.17 | 2100 | 0.4136 | 0.83 | 0.8259 |
0.4371 | 0.17 | 2150 | 0.4096 | 0.82 | 0.8097 |
0.4371 | 0.18 | 2200 | 0.4116 | 0.82 | 0.8097 |
0.4371 | 0.18 | 2250 | 0.4039 | 0.82 | 0.8097 |
0.4371 | 0.18 | 2300 | 0.4044 | 0.82 | 0.8097 |
0.4371 | 0.19 | 2350 | 0.4031 | 0.82 | 0.8097 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support