camembert_ccnet_classification_tools_fr_V2

This model is a fine-tuned version of camembert/camembert-base-ccnet on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3572
  • Accuracy: 0.9479
  • Learning Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy Rate
1.7727 1.0 15 1.2524 0.7708 0.0001
0.9027 2.0 30 0.6733 0.8646 0.0001
0.4256 3.0 45 0.4453 0.8646 0.0001
0.2468 4.0 60 0.2961 0.9375 0.0001
0.1407 5.0 75 0.2918 0.9271 0.0001
0.082 6.0 90 0.3904 0.9062 9e-05
0.0486 7.0 105 0.2854 0.9479 0.0001
0.0821 8.0 120 0.2282 0.9479 0.0001
0.044 9.0 135 0.2699 0.9375 0.0001
0.0308 10.0 150 0.2305 0.9479 0.0001
0.0201 11.0 165 0.3650 0.9271 0.0001
0.0106 12.0 180 0.3281 0.9479 8e-05
0.0079 13.0 195 0.3435 0.9479 0.0001
0.007 14.0 210 0.3455 0.9479 0.0001
0.0322 15.0 225 0.2507 0.9583 0.0001
0.0055 16.0 240 0.2874 0.9583 0.0001
0.0047 17.0 255 0.2885 0.9583 0.0001
0.0042 18.0 270 0.2875 0.9583 7e-05
0.0039 19.0 285 0.2922 0.9583 0.0001
0.0035 20.0 300 0.2968 0.9583 0.0001
0.0033 21.0 315 0.3038 0.9479 0.0001
0.0031 22.0 330 0.3108 0.9479 0.0001
0.0029 23.0 345 0.3141 0.9479 0.0001
0.0027 24.0 360 0.3151 0.9479 6e-05
0.0025 25.0 375 0.3170 0.9479 0.0001
0.0023 26.0 390 0.3186 0.9479 0.0001
0.0023 27.0 405 0.3194 0.9479 0.0001
0.0022 28.0 420 0.3213 0.9479 0.0001
0.0021 29.0 435 0.3238 0.9479 0.0001
0.002 30.0 450 0.3246 0.9479 5e-05
0.0019 31.0 465 0.3273 0.9479 0.0000
0.0018 32.0 480 0.3284 0.9479 0.0000
0.0017 33.0 495 0.3383 0.9479 0.0000
0.0017 34.0 510 0.3408 0.9479 0.0000
0.0017 35.0 525 0.3423 0.9479 0.0000
0.0016 36.0 540 0.3436 0.9479 4e-05
0.0015 37.0 555 0.3451 0.9479 0.0000
0.0015 38.0 570 0.3459 0.9479 0.0000
0.0014 39.0 585 0.3467 0.9479 0.0000
0.0014 40.0 600 0.3479 0.9479 0.0000
0.0013 41.0 615 0.3488 0.9479 0.0000
0.0013 42.0 630 0.3502 0.9479 3e-05
0.0013 43.0 645 0.3501 0.9479 0.0000
0.0013 44.0 660 0.3499 0.9479 0.0000
0.0012 45.0 675 0.3506 0.9479 0.0000
0.0012 46.0 690 0.3515 0.9479 0.0000
0.0012 47.0 705 0.3522 0.9479 0.0000
0.0012 48.0 720 0.3528 0.9479 2e-05
0.0011 49.0 735 0.3534 0.9479 0.0000
0.0012 50.0 750 0.3541 0.9479 0.0000
0.0011 51.0 765 0.3545 0.9479 0.0000
0.0011 52.0 780 0.3549 0.9479 0.0000
0.0011 53.0 795 0.3556 0.9479 0.0000
0.0011 54.0 810 0.3560 0.9479 1e-05
0.0011 55.0 825 0.3563 0.9479 0.0000
0.0011 56.0 840 0.3567 0.9479 0.0000
0.0011 57.0 855 0.3570 0.9479 5e-06
0.0011 58.0 870 0.3571 0.9479 0.0000
0.0011 59.0 885 0.3572 0.9479 0.0000
0.001 60.0 900 0.3572 0.9479 0.0

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AntoineD/camembert_ccnet_classification_tools_fr_V2

Finetuned
(13)
this model