camembert_ccnet_classification_tools_fr_V2
This model is a fine-tuned version of camembert/camembert-base-ccnet on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3572
- Accuracy: 0.9479
- Learning Rate: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Rate |
---|---|---|---|---|---|
1.7727 | 1.0 | 15 | 1.2524 | 0.7708 | 0.0001 |
0.9027 | 2.0 | 30 | 0.6733 | 0.8646 | 0.0001 |
0.4256 | 3.0 | 45 | 0.4453 | 0.8646 | 0.0001 |
0.2468 | 4.0 | 60 | 0.2961 | 0.9375 | 0.0001 |
0.1407 | 5.0 | 75 | 0.2918 | 0.9271 | 0.0001 |
0.082 | 6.0 | 90 | 0.3904 | 0.9062 | 9e-05 |
0.0486 | 7.0 | 105 | 0.2854 | 0.9479 | 0.0001 |
0.0821 | 8.0 | 120 | 0.2282 | 0.9479 | 0.0001 |
0.044 | 9.0 | 135 | 0.2699 | 0.9375 | 0.0001 |
0.0308 | 10.0 | 150 | 0.2305 | 0.9479 | 0.0001 |
0.0201 | 11.0 | 165 | 0.3650 | 0.9271 | 0.0001 |
0.0106 | 12.0 | 180 | 0.3281 | 0.9479 | 8e-05 |
0.0079 | 13.0 | 195 | 0.3435 | 0.9479 | 0.0001 |
0.007 | 14.0 | 210 | 0.3455 | 0.9479 | 0.0001 |
0.0322 | 15.0 | 225 | 0.2507 | 0.9583 | 0.0001 |
0.0055 | 16.0 | 240 | 0.2874 | 0.9583 | 0.0001 |
0.0047 | 17.0 | 255 | 0.2885 | 0.9583 | 0.0001 |
0.0042 | 18.0 | 270 | 0.2875 | 0.9583 | 7e-05 |
0.0039 | 19.0 | 285 | 0.2922 | 0.9583 | 0.0001 |
0.0035 | 20.0 | 300 | 0.2968 | 0.9583 | 0.0001 |
0.0033 | 21.0 | 315 | 0.3038 | 0.9479 | 0.0001 |
0.0031 | 22.0 | 330 | 0.3108 | 0.9479 | 0.0001 |
0.0029 | 23.0 | 345 | 0.3141 | 0.9479 | 0.0001 |
0.0027 | 24.0 | 360 | 0.3151 | 0.9479 | 6e-05 |
0.0025 | 25.0 | 375 | 0.3170 | 0.9479 | 0.0001 |
0.0023 | 26.0 | 390 | 0.3186 | 0.9479 | 0.0001 |
0.0023 | 27.0 | 405 | 0.3194 | 0.9479 | 0.0001 |
0.0022 | 28.0 | 420 | 0.3213 | 0.9479 | 0.0001 |
0.0021 | 29.0 | 435 | 0.3238 | 0.9479 | 0.0001 |
0.002 | 30.0 | 450 | 0.3246 | 0.9479 | 5e-05 |
0.0019 | 31.0 | 465 | 0.3273 | 0.9479 | 0.0000 |
0.0018 | 32.0 | 480 | 0.3284 | 0.9479 | 0.0000 |
0.0017 | 33.0 | 495 | 0.3383 | 0.9479 | 0.0000 |
0.0017 | 34.0 | 510 | 0.3408 | 0.9479 | 0.0000 |
0.0017 | 35.0 | 525 | 0.3423 | 0.9479 | 0.0000 |
0.0016 | 36.0 | 540 | 0.3436 | 0.9479 | 4e-05 |
0.0015 | 37.0 | 555 | 0.3451 | 0.9479 | 0.0000 |
0.0015 | 38.0 | 570 | 0.3459 | 0.9479 | 0.0000 |
0.0014 | 39.0 | 585 | 0.3467 | 0.9479 | 0.0000 |
0.0014 | 40.0 | 600 | 0.3479 | 0.9479 | 0.0000 |
0.0013 | 41.0 | 615 | 0.3488 | 0.9479 | 0.0000 |
0.0013 | 42.0 | 630 | 0.3502 | 0.9479 | 3e-05 |
0.0013 | 43.0 | 645 | 0.3501 | 0.9479 | 0.0000 |
0.0013 | 44.0 | 660 | 0.3499 | 0.9479 | 0.0000 |
0.0012 | 45.0 | 675 | 0.3506 | 0.9479 | 0.0000 |
0.0012 | 46.0 | 690 | 0.3515 | 0.9479 | 0.0000 |
0.0012 | 47.0 | 705 | 0.3522 | 0.9479 | 0.0000 |
0.0012 | 48.0 | 720 | 0.3528 | 0.9479 | 2e-05 |
0.0011 | 49.0 | 735 | 0.3534 | 0.9479 | 0.0000 |
0.0012 | 50.0 | 750 | 0.3541 | 0.9479 | 0.0000 |
0.0011 | 51.0 | 765 | 0.3545 | 0.9479 | 0.0000 |
0.0011 | 52.0 | 780 | 0.3549 | 0.9479 | 0.0000 |
0.0011 | 53.0 | 795 | 0.3556 | 0.9479 | 0.0000 |
0.0011 | 54.0 | 810 | 0.3560 | 0.9479 | 1e-05 |
0.0011 | 55.0 | 825 | 0.3563 | 0.9479 | 0.0000 |
0.0011 | 56.0 | 840 | 0.3567 | 0.9479 | 0.0000 |
0.0011 | 57.0 | 855 | 0.3570 | 0.9479 | 5e-06 |
0.0011 | 58.0 | 870 | 0.3571 | 0.9479 | 0.0000 |
0.0011 | 59.0 | 885 | 0.3572 | 0.9479 | 0.0000 |
0.001 | 60.0 | 900 | 0.3572 | 0.9479 | 0.0 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for AntoineD/camembert_ccnet_classification_tools_fr_V2
Base model
almanach/camembert-base-ccnet