camembert_ccnet_classification_tools_classifier-only_fr_V2

This model is a fine-tuned version of camembert/camembert-base-ccnet on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8155
  • Accuracy: 0.7396
  • Learning Rate: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy Rate
2.0589 1.0 15 2.0475 0.25 0.0001
2.0002 2.0 30 1.9708 0.3958 0.0001
1.9338 3.0 45 1.9353 0.3646 0.0001
1.8829 4.0 60 1.8915 0.3958 0.0001
1.8255 5.0 75 1.8285 0.4688 0.0001
1.79 6.0 90 1.7780 0.5833 9e-05
1.7391 7.0 105 1.7396 0.4688 0.0001
1.6838 8.0 120 1.6781 0.5417 0.0001
1.6385 9.0 135 1.6208 0.6042 0.0001
1.6083 10.0 150 1.5847 0.5729 0.0001
1.5543 11.0 165 1.5476 0.625 0.0001
1.5171 12.0 180 1.5068 0.6042 8e-05
1.4848 13.0 195 1.4651 0.6354 0.0001
1.4068 14.0 210 1.4436 0.6354 0.0001
1.4141 15.0 225 1.3965 0.6042 0.0001
1.3678 16.0 240 1.3565 0.6562 0.0001
1.309 17.0 255 1.3221 0.6875 0.0001
1.2867 18.0 270 1.2940 0.6667 7e-05
1.2667 19.0 285 1.2548 0.6667 0.0001
1.2271 20.0 300 1.2286 0.6875 0.0001
1.1865 21.0 315 1.1943 0.6875 0.0001
1.1691 22.0 330 1.1705 0.6979 0.0001
1.1502 23.0 345 1.1483 0.6875 0.0001
1.1195 24.0 360 1.1250 0.6875 6e-05
1.1148 25.0 375 1.1058 0.6979 0.0001
1.0893 26.0 390 1.0787 0.7083 0.0001
1.0736 27.0 405 1.0668 0.6979 0.0001
1.0303 28.0 420 1.0466 0.6979 0.0001
1.0475 29.0 435 1.0211 0.6979 0.0001
1.0122 30.0 450 0.9995 0.7292 5e-05
1.0014 31.0 465 0.9907 0.7292 0.0000
0.973 32.0 480 0.9791 0.7292 0.0000
0.9894 33.0 495 0.9643 0.7188 0.0000
0.9503 34.0 510 0.9531 0.7292 0.0000
0.9382 35.0 525 0.9386 0.7188 0.0000
0.9371 36.0 540 0.9313 0.7188 4e-05
0.9207 37.0 555 0.9192 0.7188 0.0000
0.9422 38.0 570 0.9091 0.7292 0.0000
0.9041 39.0 585 0.8975 0.7188 0.0000
0.8966 40.0 600 0.8888 0.7188 0.0000
0.8877 41.0 615 0.8800 0.75 0.0000
0.8933 42.0 630 0.8748 0.7396 3e-05
0.854 43.0 645 0.8629 0.75 0.0000
0.8858 44.0 660 0.8580 0.7396 0.0000
0.8407 45.0 675 0.8516 0.75 0.0000
0.8413 46.0 690 0.8475 0.75 0.0000
0.86 47.0 705 0.8416 0.7396 0.0000
0.8282 48.0 720 0.8332 0.7396 2e-05
0.835 49.0 735 0.8303 0.7396 0.0000
0.8123 50.0 750 0.8267 0.7396 0.0000
0.8175 51.0 765 0.8227 0.7396 0.0000
0.8097 52.0 780 0.8177 0.75 0.0000
0.806 53.0 795 0.8155 0.7396 0.0000

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AntoineD/camembert_ccnet_classification_tools_classifier-only_fr_V2

Finetuned
(13)
this model