Edit model card

Prepare and importing

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor

import librosa
import numpy as np


def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech


def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}

    with torch.no_grad():
        logits = model_(**inputs).logits

    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
    return outputs

Evoking:

TRUST = True

config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST)
model_ = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_.to(device)

Use case

result = predict("/path/to/russian_audio_speech.wav", 16000)
print(result)
# outputs
[{'Emotion': 'anger', 'Score': '0.0%'},
 {'Emotion': 'disgust', 'Score': '100.0%'},
 {'Emotion': 'enthusiasm', 'Score': '0.0%'},
 {'Emotion': 'fear', 'Score': '0.0%'},
 {'Emotion': 'happiness', 'Score': '0.0%'},
 {'Emotion': 'neutral', 'Score': '0.0%'},
 {'Emotion': 'sadness', 'Score': '0.0%'}]

Results

precision recall f1-score support
anger 0.97 0.86 0.92 44
disgust 0.71 0.78 0.74 37
enthusiasm 0.51 0.80 0.62 40
fear 0.80 0.62 0.70 45
happiness 0.66 0.70 0.68 44
neutral 0.81 0.66 0.72 38
sadness 0.79 0.59 0.68 32
accuracy 0.72 280
macro avg 0.75 0.72 0.72 280
weighted avg 0.75 0.72 0.73 280

Citations

@misc{Aniemore,
  author = {Артем Аментес, Илья Лубенец, Никита Давидчук},
  title = {Открытая библиотека искусственного интеллекта для анализа и выявления эмоциональных оттенков речи человека},
  year = {2022},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.com/aniemore/Aniemore}},
  email = {[email protected]}
}
Downloads last month
12,489
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition

Space using Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition 1

Evaluation results