woodchen7's picture
Upload README.md with huggingface_hub
60844a9 verified
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/logos/angelslim_logo_light.png?raw=true">
<img alt="AngelSlim" src="https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/logos/angelslim_logo.png?raw=true" width=55%>
</picture>
</p>
<h3 align="center">
Dedicated to building a more intuitive, comprehensive, and efficient LLMs compression toolkit.
</h3>
<p align="center">
📖 <a href="https://angelslim.readthedocs.io/">Documentation</a>&nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/AngelSlim">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/AngelSlim">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp💬 <a href="./docs/source/assets/angel_slim_wechat.png">WeChat</a>
<br>
</p>
## Table of Contents
- [Latest Updates](#latest-updates)
- [Key Features](#key-features)
- [Supported Models](#supported-models)
- [How to Use](#how-to-use)
- [Install AngelSlim](#install-angelslim)
- [Quick Start](#quick-start)
- [deployment & Evaluation](#deployment)
- [Benchmark](#benchmark)
- [License](#license)
- [Citation](#citation)
- [Technical Discussion](#technical-discussion)
## 📣Latest Updates
- [25/07/04] We now support quantization for Hunyuan/Qwen2.5/Qwen3/DeepSeek-R1-Distill-Qwen and other models, including INT8/FP8/INT4 algorithms.
We also opensource Qwen3-8B`s Eagle3 model weight.
Coming soon:
- [ ] Support W4A8 quantization for DeepSeek-R1.
- [ ] Support quantization for multimodal models like Qwen-VL.
- [ ] Release of new algorithm for speculative sampling.
## 🌟Key Features
- **Highly Integrated**: This toolkit integrates mainstream compression algorithms into a unified framework, offering developers one-click access with exceptional ease of use.
- **Continuous Innovation**: Beyond integrating widely-used industry algorithms, we are continuously researching better compression algorithms, which will be gradually open-sourced in the future.
- **Performance-Driven**: We continuously optimize end-to-end performance in model compression workflows and algorithm deployment, such as enabling quantization of models like Qwen3-235B and DeepSeek-R1 on a single GPU.
## 💼Supported Models
### Quantization
Currently supports the following LLMs, including Hunyuan-Dense, Hunyuan-MoE, Qwen3-Dense, Qwen3-MoE, Qwen2.5, DeepSeek-R1 distilled Qwen models, and QwQ::
| Model | FP8-Dynamic | FP8-Static | INT8-Dynamic | INT4-GPTQ | INT4-AWQ |
| --------------------------------------------------------------------------------------------------------------------------- | ----------- | ---------- | ------------ | --------- | -------- |
| [Hunyuan-Dense](https://huggingface.co/tencent/Hunyuan-7B-Instruct) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Hunyuan-MoE](https://huggingface.co/collections/tencent/hunyuan-a13b-685ec38e5b46321e3ea7c4be) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen3-Dense](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen3-MoE](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen2.5](https://huggingface.co/collections/AngelSlim/qwen2-25-quant-68652d6cbdf5c0d4b1c4499a) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [DeepSeek-R1-Distill-Qwen](https://huggingface.co/collections/AngelSlim/deepseek-r1-distill-quant-68652f16a9c206b030b05f7f) | ✅ | ✅ | ✅ | ✅ | ✅ |
| [QwQ](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
### Speculative Decoding
The Eagle3 weights for the Qwen3-8B model are now available, with Eagle3 weights for other models in the Qwen3 series to be released soon.
| Model | Eagle3 |
| ----------| ----------------- |
| [Qwen3-8B](https://huggingface.co/AngelSlim/Qwen3-8B_eagle3/tree/main) | ✅ |
| Qwen3-14B | coming soon |
| Qwen3-32B | coming soon |
## 🛎️How to Use
### Install AngelSlim
We recommend using `pip` to install the latest stable version of `AngelSlim`:
```shell
pip install angelslim
```
Alternatively, you can clone the repository and install from source in editable mode:
```shell
cd AngelSlim && python setup.py install
```
For more detailed installation instructions, please refer to the [Installation Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/installation.html).
### Quick Start
After installing `AngelSlim`, you can quickly start by running the following script to perform static `FP8` quantization on the `Qwen3-1.7B` model:
* One-click Start
```shell
python3 tools/run.py -c configs/qwen3/fp8_static/qwen3-1_7b_fp8_static.yaml
```
This example will load the HuggingFace model and perform activation value calibration using the `dataset` specified in the config file, saving the quantized model weights.
* Code-based Start
To perform dynamic `FP8` quantization on `Qwen3-1.7B`:
```python
from angelslim.engine import Engine
slim_engine = Engine()
# Prepare model
slim_engine.prepare_model(model_name="Qwen", model_path="Qwen/Qwen3-1.7B",)
# Initialize compressor
slim_engine.prepare_compressor("PTQ", default_method="fp8_dynamic")
# Compress model
slim_engine.run()
# Save compressed model
slim_engine.save("./output")
```
For more details, please refer to the [Quick Start Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/quickstrat.html).
### 🖥️ Deployment and Testing
#### 1. API Service Deployment
After specifying the quantized model path `MODEL_PATH`, you can deploy an OpenAI-compatible API service using the following LLMs inference frameworks:
**vLLM**
Use the following script to launch a [vLLM](https://github.com/vllm-project/vllm) server, recommended version `vllm>=0.8.5.post1`. For MOE INT8 quantized models, vllm>=0.9.0 is required.
```shell
bash deploy/run_vllm.sh $MODEL_PATH
```
**SGLang**
Use the following script to launch a [SGLang](https://github.com/sgl-project/sglang) server, recommended version `sglang>=0.4.6.post1`.
```shell
bash deploy/run_sglang.sh $MODEL_PATH
```
#### 2. Service Invocation
Invoke requests via [OpenAI's API format](https://platform.openai.com/docs/api-reference/introduction):
```shell
bash deploy/openai.sh $MODEL_PATH
```
#### 3. Performance Evaluation
Evaluate the performance of quantized model using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), recommended version`lm-eval>=0.4.8`:
```shell
bash deploy/lm_eval.sh $MODEL_PATH
```
For more detaileds, please refer to the [Deployment Documentation](https://angelslim.readthedocs.io/zh-cn/latest/deployment/deploy.html).
## 📈 Benchmark
### Quantization
The performance test results for selected models are shown below. For the complete benchmark, refer to the [Benchmark documentation](https://angelslim.readthedocs.io/zh-cn/latest/performance/quantization/benchmarks.html)
#### Hunyuan Series Models
Benchmark results for the `Hunyuan-A13B-Instruct` model with `FP8` and `INT4-GPTQ` quantization algorithms on datasets including `AIME 2024`, `GSM8K`, `BBH`, and `DROP`:
| Bench | Hunyuan-A13B-Instruct | Hunyuan-A13B-Instruct-FP8 | Hunyuan-A13B-Instruct-Int4-GPTQ |
|:---------:|:---------------------:|:-------------------------:|:-------------------------------:|
| AIME 2024 | 87.3 | 86.7 | 86.7 |
| GSM8K | 94.39 | 94.01 | 94.24 |
| BBH | 89.1 | 88.34 | 87.91 |
| DROP | 91.1 | 91.1 | 91.05 |
#### Qwen3 Series Models
Benchmark results for Qwen3 series models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU`, `GSM8K`, and `HUMANEVAL`:
<table>
<thead>
<tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th><th>HUMANEVAL</th></tr>
</thead>
<tbody>
<tr><td rowspan="4">Qwen3-0.6B</td><td>BF16</td><td>45.84</td><td>47.21</td><td>42.99</td><td>19.51</td></tr>
<tr><td>FP8-Static</td><td>45.99</td><td>46.87</td><td>38.06</td><td>18.90</td></tr>
<tr><td>FP8-Dynamic</td><td>45.99</td><td>46.93</td><td>38.29</td><td>20.73</td></tr>
<tr><td>INT8-Dynamic</td><td>45.17</td><td>46.95</td><td>41.17</td><td>21.34</td></tr>
<tr><td rowspan="6">Qwen3-8B</td><td>BF16</td><td>79.27</td><td>74.78</td><td>87.79</td><td>63.41</td></tr>
<tr><td>FP8-Static</td><td>78.23</td><td>74.79</td><td>86.96</td><td>62.20</td></tr>
<tr><td>FP8-Dynamic</td><td>78.45</td><td>74.75</td><td>87.64</td><td>62.80</td></tr>
<tr><td>INT8-Dynamic</td><td>78.01</td><td>74.84</td><td>86.96</td><td>67.07</td></tr>
<tr><td>INT4-GPTQ</td><td>77.19</td><td>73.26</td><td>86.43</td><td>62.20</td></tr>
<tr><td>INT4-AWQ</td><td>76.15</td><td>73.59</td><td>86.96</td><td>63.41</td></tr>
<tr><td rowspan="6">Qwen3-14B</td><td>BF16</td><td>83.06</td><td>78.90</td><td>88.40</td><td>55.49</td></tr>
<tr><td>FP8-Static</td><td>82.62</td><td>78.57</td><td>89.46</td><td>57.32</td></tr>
<tr><td>FP8-Dynamic</td><td>82.24</td><td>78.92</td><td>88.32</td><td>52.44</td></tr>
<tr><td>INT8-Dynamic</td><td>81.87</td><td>78.13</td><td>86.28</td><td>56.10</td></tr>
<tr><td>INT4-GPTQ</td><td>81.05</td><td>78.02</td><td>87.34</td><td>57.93</td></tr>
<tr><td>INT4-AWQ</td><td>82.02</td><td>77.68</td><td>84.23</td><td>61.59</td></tr>
<tr><td rowspan="5">Qwen3-32B</td><td>BF16</td><td>86.55</td><td>82.00</td><td>74.53</td><td>37.80</td></tr>
<tr><td>FP8-Static</td><td>86.92</td><td>81.78</td><td>70.20</td><td>39.63</td></tr>
<tr><td>FP8-Dynamic</td><td>86.55</td><td>81.89</td><td>70.43</td><td>38.41</td></tr>
<tr><td>INT4-GPTQ</td><td>86.18</td><td>81.01</td><td>-</td><td>43.29</td></tr>
<tr><td>INT4-AWQ</td><td>86.18</td><td>81.54</td><td>-</td><td>36.59</td></tr>
<tr><td rowspan="4">Qwen3-30B-A3B</td><td>BF16</td><td>83.66</td><td>79.36</td><td>89.99</td><td>31.71</td></tr>
<tr><td>FP8-Static</td><td>83.95</td><td>79.47</td><td>89.01</td><td>31.10</td></tr>
<tr><td>FP8-Dynamic</td><td>84.10</td><td>79.40</td><td>89.16</td><td>32.93</td></tr>
<tr><td>INT8-Dynamic</td><td>83.36</td><td>79.48</td><td>89.16</td><td>34.15</td></tr>
<tr><td rowspan="4">Qwen3-235B-A22B</td><td>BF16</td><td>89.60</td><td>86.28</td><td>85.29</td><td>27.44</td></tr>
<tr><td>FP8-Static</td><td>89.67</td><td>86.19</td><td>86.96</td><td>27.44</td></tr>
<tr><td>FP8-Dynamic</td><td>89.67</td><td>86.18</td><td>85.22</td><td>28.05</td></tr>
<tr><td>INT8-Dynamic</td><td>88.93</td><td>86.20</td><td>86.20</td><td>23.78</td></tr>
<tr><td rowspan="5">QwQ-32B</td><td>BF16</td><td>85.74</td><td>82.03</td><td>73.31</td><td>42.68</td></tr>
<tr><td>FP8-Static</td><td>85.44</td><td>81.91</td><td>75.36</td><td>42.68</td></tr>
<tr><td>FP8-Dynamic</td><td>85.07</td><td>81.93</td><td>75.66</td><td>42.07</td></tr>
<tr><td>INT4-GPTQ</td><td>84.03</td><td>81.26</td><td>68.23</td><td>45.73</td></tr>
<tr><td>INT4-AWQ</td><td>83.58</td><td>81.01</td><td>68.69</td><td>43.29</td></tr>
</tbody>
</table>
#### Other Models
Benchmark results for other models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU` and `GSM8K`:
<table>
<thead>
<tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th></tr>
</thead>
<tbody>
<tr><td rowspan="3">Qwen2.5-1.5B-Instruct</td><td>BF16</td><td>67.01</td><td>60.05</td><td>54.28</td></tr>
<tr><td>FP8-Static</td><td>66.27</td><td>60.23</td><td>-</td></tr>
<tr><td>FP8-Dynamic</td><td>66.79</td><td>60.08</td><td>51.71</td></tr>
<tr><td rowspan="5">Qwen2.5-7B-Instruct</td><td>BF16</td><td>81.20</td><td>74.55</td><td>79.98</td></tr>
<tr><td>FP8-Static</td><td>81.13</td><td>74.03</td><td>79.30</td></tr>
<tr><td>FP8-Dynamic</td><td>80.31</td><td>74.07</td><td>79.00</td></tr>
<tr><td>INT4-GPTQ</td><td>79.05</td><td>73.05</td><td>74.75</td></tr>
<tr><td>INT4-AWQ</td><td>79.35</td><td>73.22</td><td>79.38</td></tr>
<tr><td rowspan="5">Qwen2.5-32B-Instruct</td><td>BF16</td><td>87.30</td><td>83.21</td><td>81.73</td></tr>
<tr><td>FP8-Static</td><td>87.59</td><td>83.08</td><td>81.58</td></tr>
<tr><td>FP8-Dynamic</td><td>87.30</td><td>83.04</td><td>81.58</td></tr>
<tr><td>INT4-GPTQ</td><td>86.70</td><td>82.45</td><td>82.03</td></tr>
<tr><td>INT4-AWQ</td><td>87.00</td><td>82.64</td><td>-</td></tr>
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-7B</td><td>BF16</td><td>53.49</td><td>53.80</td><td>75.74</td></tr>
<tr><td>FP8-Static</td><td>53.57</td><td>54.17</td><td>76.19</td></tr>
<tr><td>FP8-Dynamic</td><td>52.97</td><td>54.13</td><td>74.15</td></tr>
<tr><td>INT4-GPTQ</td><td>51.86</td><td>52.44</td><td>75.89</td></tr>
<tr><td>INT4-AWQ</td><td>53.49</td><td>53.70</td><td>-</td></tr>
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-14B</td><td>BF16</td><td>77.71</td><td>74.28</td><td>85.67</td></tr>
<tr><td>FP8-Static</td><td>77.56</td><td>74.66</td><td>86.73</td></tr>
<tr><td>FP8-Dynamic</td><td>76.82</td><td>74.63</td><td>87.11</td></tr>
<tr><td>INT4-GPTQ</td><td>74.29</td><td>72.37</td><td>84.61</td></tr>
<tr><td>INT4-AWQ</td><td>74.81</td><td>73.00</td><td>86.05</td></tr>
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-32B</td><td>BF16</td><td>84.18</td><td>80.89</td><td>87.41</td></tr>
<tr><td>FP8-Static</td><td>83.43</td><td>80.90</td><td>87.57</td></tr>
<tr><td>FP8-Dynamic</td><td>83.73</td><td>81.10</td><td>86.43</td></tr>
<tr><td>INT4-GPTQ</td><td>84.10</td><td>79.80</td><td>86.73</td></tr>
<tr><td>INT4-AWQ</td><td>82.84</td><td>80.15</td><td>87.19</td></tr>
</tbody>
</table>
### Speculative Decoding
Benchmark results for Qwen3 series models with `Eagle3` speculative decoding algorithm on datasets including `MT-bench`, `HunmanEval`, `GSM8K`, and `Alpaca`:
#### Qwen3-8B
<table border="0">
<thead>
<tr><th rowspan="3">Temperature</th><th rowspan="3">Method</th><th colspan="8">Datasets</th></tr>
<tr><th colspan="2">MT-bench</th><th colspan="2">HumanEval</th><th colspan="2">GSM8K</th><th colspan="2">Alpaca</th></tr>
<tr><th>Speedup</th><th>Accept length</th><th>Speedup</th><th>Accept length</th><th>Speedup</th><th>Accept length</th><th>Speedup</th><th>Accept length</th></tr>
</thead>
<tbody>
<tr><td>T=0</td><td>Eagle3</td><td>2.63x</td><td>3.65</td><td>2.76x</td><td>3.85</td><td>2.82x</td><td>3.90</td><td>2.62x</td><td>3.48</td></tr>
<tr><td>T=1</td><td>Eagle3</td><td>1.98x</td><td>2.75</td><td>2.25x</td><td>3.11</td><td>2.31x</td><td>3.15</td><td>2.10x</td><td>2.76</td></tr>
</tbody>
</table>
## 📝 Model License
The code for this project is open-sourced under the [License for AngelSlim](License_AngelSlim_model_and_dataset.txt).
## 🔗 Citation
```
@software{AngelSlim2025,
title={{AngelSlim}},
author={Tencent AngelSlim Project Contributors},
year={2025},
month={6},
url={https://github.com/Tencent/AngelSlim},
}
```
## 💬 Technical Discussion
* AngelSlim is continuously iterating and new features will be released soon. If you have any questions or suggestions, please open an issue on GitHub or join our [WeChat technical discussion group](https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/angel_slim_wechat.png?raw=true).