See axolotl config
axolotl version: 0.13.0.dev0
base_model: Qwen/Qwen3-4B-Instruct-2507
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
strict: false
datasets:
- path: alpaca_df.jsonl
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/
pad_to_sequence_len: true
sequence_len: 8192
sample_packing: true
wandb_project: qwen3-4b-sft
wandb_name: qwen3-4b-sft
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-6
bf16: true
torch_compile: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 5
flash_attention: true
load_best_model_at_end: true
evals_per_epoch: 20
saves_per_epoch: 5
warmup_ratio: 0.1
weight_decay: 0.0
fsdp_version: 2
fsdp_config:
offload_params: false
cpu_ram_efficient_loading: true
auto_wrap_policy: TRANSFORMER_BASED_WRAP
transformer_layer_cls_to_wrap: Qwen3DecoderLayer
state_dict_type: FULL_STATE_DICT
reshard_after_forward: true
special_tokens:
outputs/
This model is a fine-tuned version of Qwen/Qwen3-4B-Instruct-2507 on the alpaca_df.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.8415
- Memory/max Active (gib): 8.89
- Memory/max Allocated (gib): 8.89
- Memory/device Reserved (gib): 26.02
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 9
- training_steps: 95
Training results
| Training Loss | Epoch | Step | Validation Loss | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 2.0265 | 7.27 | 7.27 | 8.14 |
| 2.0249 | 0.0524 | 5 | 1.9972 | 8.89 | 8.89 | 26.06 |
| 1.9435 | 0.1047 | 10 | 1.7351 | 8.89 | 8.89 | 26.02 |
| 1.5837 | 0.1571 | 15 | 1.3767 | 8.89 | 8.89 | 26.02 |
| 1.2933 | 0.2094 | 20 | 1.1584 | 8.89 | 8.89 | 26.02 |
| 1.1102 | 0.2618 | 25 | 1.0479 | 8.89 | 8.89 | 26.02 |
| 1.0265 | 0.3141 | 30 | 0.9719 | 8.89 | 8.89 | 26.02 |
| 0.9662 | 0.3665 | 35 | 0.9244 | 8.89 | 8.89 | 26.02 |
| 0.9272 | 0.4188 | 40 | 0.8964 | 8.89 | 8.89 | 26.02 |
| 0.8899 | 0.4712 | 45 | 0.8775 | 8.89 | 8.89 | 26.02 |
| 0.8913 | 0.5236 | 50 | 0.8638 | 8.89 | 8.89 | 26.02 |
| 0.886 | 0.5759 | 55 | 0.8538 | 8.89 | 8.89 | 26.02 |
| 0.8618 | 0.6283 | 60 | 0.8481 | 8.89 | 8.89 | 26.02 |
| 0.8713 | 0.6806 | 65 | 0.8450 | 8.89 | 8.89 | 26.02 |
| 0.8534 | 0.7330 | 70 | 0.8426 | 8.89 | 8.89 | 26.02 |
| 0.8685 | 0.7853 | 75 | 0.8417 | 8.89 | 8.89 | 26.02 |
| 0.86 | 0.8377 | 80 | 0.8413 | 8.89 | 8.89 | 26.02 |
| 0.8583 | 0.8901 | 85 | 0.8412 | 8.89 | 8.89 | 26.02 |
| 0.853 | 0.9424 | 90 | 0.8411 | 8.89 | 8.89 | 26.02 |
| 0.8562 | 0.9948 | 95 | 0.8415 | 8.89 | 8.89 | 26.02 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for AndyGulp/dec-4b-sft-full
Base model
Qwen/Qwen3-4B-Instruct-2507