test_dino-large-2025_05_19_65652-bs16_freeze
This model is a fine-tuned version of facebook/dinov2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0573
- F1 Micro: 0.6898
- F1 Macro: 0.1356
- Accuracy: 0.5959
- Learning Rate: 0.0005
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate |
---|---|---|---|---|---|---|---|
0.0771 | 1.0 | 1081 | 0.0632 | 0.6761 | 0.1357 | 0.5803 | 0.0005 |
0.0671 | 2.0 | 2162 | 0.0594 | 0.6917 | 0.1381 | 0.6018 | 0.0005 |
0.0664 | 3.0 | 3243 | 0.0612 | 0.6820 | 0.1381 | 0.6087 | 0.0005 |
0.0636 | 4.0 | 4324 | 0.0574 | 0.6980 | 0.1413 | 0.6080 | 0.0005 |
0.063 | 5.0 | 5405 | 0.0581 | 0.6880 | 0.1375 | 0.6032 | 0.0005 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.6.0+cu118
- Datasets 3.0.2
- Tokenizers 0.21.1
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Amoros/test_dino-large-2025_05_19_65652-bs16_freeze
Base model
facebook/dinov2-large