Amoros_Beaugosse_test-large-2025_05_20_57422-bs16_freeze

This model is a fine-tuned version of facebook/dinov2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0987
  • F1 Micro: 0.5482
  • F1 Macro: 0.3454
  • Accuracy: 0.4313
  • Learning Rate: 1e-05

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy Rate
No log 1.0 195 0.8014 0.1708 0.1167 0.1568 0.001
No log 2.0 390 0.1238 0.3956 0.1496 0.2677 0.001
0.2531 3.0 585 0.1158 0.4517 0.1890 0.3270 0.001
0.2531 4.0 780 0.1146 0.4248 0.1657 0.2945 0.001
0.2531 5.0 975 0.1105 0.4866 0.2335 0.3652 0.001
0.1272 6.0 1170 0.1105 0.4681 0.2026 0.3442 0.001
0.1272 7.0 1365 0.1122 0.4576 0.2113 0.3308 0.001
0.1158 8.0 1560 0.1062 0.4813 0.2474 0.3461 0.001
0.1158 9.0 1755 0.1058 0.4863 0.2428 0.3537 0.001
0.1158 10.0 1950 0.1075 0.4813 0.2409 0.3480 0.001
0.1126 11.0 2145 0.1058 0.4942 0.2747 0.3595 0.001
0.1126 12.0 2340 0.1065 0.4944 0.2533 0.3738 0.001
0.1098 13.0 2535 0.1071 0.4823 0.2584 0.3614 0.001
0.1098 14.0 2730 0.1086 0.5022 0.2807 0.3776 0.001
0.1098 15.0 2925 0.1056 0.5032 0.2649 0.3767 0.001
0.108 16.0 3120 0.1077 0.5106 0.2838 0.3958 0.001
0.108 17.0 3315 0.1072 0.4892 0.2847 0.3709 0.001
0.1064 18.0 3510 0.1057 0.4962 0.2752 0.3709 0.001
0.1064 19.0 3705 0.1053 0.4917 0.2690 0.3671 0.001
0.1064 20.0 3900 0.1052 0.5016 0.2853 0.3738 0.001
0.1047 21.0 4095 0.1064 0.5085 0.2684 0.3728 0.001
0.1047 22.0 4290 0.1057 0.5067 0.3060 0.3767 0.001
0.1047 23.0 4485 0.1059 0.5094 0.3023 0.3862 0.001
0.1049 24.0 4680 0.1055 0.5167 0.3091 0.3910 0.001
0.1049 25.0 4875 0.1059 0.4856 0.3083 0.3614 0.001
0.1037 26.0 5070 0.1073 0.4931 0.2853 0.3738 0.001
0.1037 27.0 5265 0.1006 0.5214 0.3116 0.3948 0.0001
0.1037 28.0 5460 0.1003 0.5369 0.3350 0.4092 0.0001
0.0968 29.0 5655 0.1000 0.5425 0.3217 0.4197 0.0001
0.0968 30.0 5850 0.0993 0.5555 0.3540 0.4331 0.0001
0.0932 31.0 6045 0.0993 0.5562 0.3749 0.4359 0.0001
0.0932 32.0 6240 0.0990 0.5597 0.3724 0.4369 0.0001
0.0932 33.0 6435 0.0991 0.5521 0.3543 0.4293 0.0001
0.0899 34.0 6630 0.0986 0.5636 0.3742 0.4446 0.0001
0.0899 35.0 6825 0.0990 0.5634 0.3743 0.4455 0.0001
0.0882 36.0 7020 0.0997 0.5573 0.3655 0.4407 0.0001
0.0882 37.0 7215 0.1018 0.5635 0.3725 0.4493 0.0001
0.0882 38.0 7410 0.0988 0.5694 0.3782 0.4541 0.0001
0.0846 39.0 7605 0.0991 0.5684 0.3795 0.4541 0.0001
0.0846 40.0 7800 0.0994 0.5692 0.3688 0.4570 0.0001
0.0846 41.0 7995 0.0995 0.5711 0.3758 0.4551 1e-05
0.0832 42.0 8190 0.0991 0.5714 0.3770 0.4608 1e-05
0.0832 43.0 8385 0.0993 0.5753 0.3807 0.4598 1e-05
0.0824 44.0 8580 0.0988 0.5640 0.3753 0.4503 1e-05

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.6.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.21.1
Downloads last month
27
Safetensors
Model size
306M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Amoros/Amoros_Beaugosse_test-large-2025_05_20_57422-bs16_freeze

Finetuned
(20)
this model