Amoros_Beaugosse_test-large-2025_05_20_57422-bs16_freeze
This model is a fine-tuned version of facebook/dinov2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0987
- F1 Micro: 0.5482
- F1 Macro: 0.3454
- Accuracy: 0.4313
- Learning Rate: 1e-05
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate |
---|---|---|---|---|---|---|---|
No log | 1.0 | 195 | 0.8014 | 0.1708 | 0.1167 | 0.1568 | 0.001 |
No log | 2.0 | 390 | 0.1238 | 0.3956 | 0.1496 | 0.2677 | 0.001 |
0.2531 | 3.0 | 585 | 0.1158 | 0.4517 | 0.1890 | 0.3270 | 0.001 |
0.2531 | 4.0 | 780 | 0.1146 | 0.4248 | 0.1657 | 0.2945 | 0.001 |
0.2531 | 5.0 | 975 | 0.1105 | 0.4866 | 0.2335 | 0.3652 | 0.001 |
0.1272 | 6.0 | 1170 | 0.1105 | 0.4681 | 0.2026 | 0.3442 | 0.001 |
0.1272 | 7.0 | 1365 | 0.1122 | 0.4576 | 0.2113 | 0.3308 | 0.001 |
0.1158 | 8.0 | 1560 | 0.1062 | 0.4813 | 0.2474 | 0.3461 | 0.001 |
0.1158 | 9.0 | 1755 | 0.1058 | 0.4863 | 0.2428 | 0.3537 | 0.001 |
0.1158 | 10.0 | 1950 | 0.1075 | 0.4813 | 0.2409 | 0.3480 | 0.001 |
0.1126 | 11.0 | 2145 | 0.1058 | 0.4942 | 0.2747 | 0.3595 | 0.001 |
0.1126 | 12.0 | 2340 | 0.1065 | 0.4944 | 0.2533 | 0.3738 | 0.001 |
0.1098 | 13.0 | 2535 | 0.1071 | 0.4823 | 0.2584 | 0.3614 | 0.001 |
0.1098 | 14.0 | 2730 | 0.1086 | 0.5022 | 0.2807 | 0.3776 | 0.001 |
0.1098 | 15.0 | 2925 | 0.1056 | 0.5032 | 0.2649 | 0.3767 | 0.001 |
0.108 | 16.0 | 3120 | 0.1077 | 0.5106 | 0.2838 | 0.3958 | 0.001 |
0.108 | 17.0 | 3315 | 0.1072 | 0.4892 | 0.2847 | 0.3709 | 0.001 |
0.1064 | 18.0 | 3510 | 0.1057 | 0.4962 | 0.2752 | 0.3709 | 0.001 |
0.1064 | 19.0 | 3705 | 0.1053 | 0.4917 | 0.2690 | 0.3671 | 0.001 |
0.1064 | 20.0 | 3900 | 0.1052 | 0.5016 | 0.2853 | 0.3738 | 0.001 |
0.1047 | 21.0 | 4095 | 0.1064 | 0.5085 | 0.2684 | 0.3728 | 0.001 |
0.1047 | 22.0 | 4290 | 0.1057 | 0.5067 | 0.3060 | 0.3767 | 0.001 |
0.1047 | 23.0 | 4485 | 0.1059 | 0.5094 | 0.3023 | 0.3862 | 0.001 |
0.1049 | 24.0 | 4680 | 0.1055 | 0.5167 | 0.3091 | 0.3910 | 0.001 |
0.1049 | 25.0 | 4875 | 0.1059 | 0.4856 | 0.3083 | 0.3614 | 0.001 |
0.1037 | 26.0 | 5070 | 0.1073 | 0.4931 | 0.2853 | 0.3738 | 0.001 |
0.1037 | 27.0 | 5265 | 0.1006 | 0.5214 | 0.3116 | 0.3948 | 0.0001 |
0.1037 | 28.0 | 5460 | 0.1003 | 0.5369 | 0.3350 | 0.4092 | 0.0001 |
0.0968 | 29.0 | 5655 | 0.1000 | 0.5425 | 0.3217 | 0.4197 | 0.0001 |
0.0968 | 30.0 | 5850 | 0.0993 | 0.5555 | 0.3540 | 0.4331 | 0.0001 |
0.0932 | 31.0 | 6045 | 0.0993 | 0.5562 | 0.3749 | 0.4359 | 0.0001 |
0.0932 | 32.0 | 6240 | 0.0990 | 0.5597 | 0.3724 | 0.4369 | 0.0001 |
0.0932 | 33.0 | 6435 | 0.0991 | 0.5521 | 0.3543 | 0.4293 | 0.0001 |
0.0899 | 34.0 | 6630 | 0.0986 | 0.5636 | 0.3742 | 0.4446 | 0.0001 |
0.0899 | 35.0 | 6825 | 0.0990 | 0.5634 | 0.3743 | 0.4455 | 0.0001 |
0.0882 | 36.0 | 7020 | 0.0997 | 0.5573 | 0.3655 | 0.4407 | 0.0001 |
0.0882 | 37.0 | 7215 | 0.1018 | 0.5635 | 0.3725 | 0.4493 | 0.0001 |
0.0882 | 38.0 | 7410 | 0.0988 | 0.5694 | 0.3782 | 0.4541 | 0.0001 |
0.0846 | 39.0 | 7605 | 0.0991 | 0.5684 | 0.3795 | 0.4541 | 0.0001 |
0.0846 | 40.0 | 7800 | 0.0994 | 0.5692 | 0.3688 | 0.4570 | 0.0001 |
0.0846 | 41.0 | 7995 | 0.0995 | 0.5711 | 0.3758 | 0.4551 | 1e-05 |
0.0832 | 42.0 | 8190 | 0.0991 | 0.5714 | 0.3770 | 0.4608 | 1e-05 |
0.0832 | 43.0 | 8385 | 0.0993 | 0.5753 | 0.3807 | 0.4598 | 1e-05 |
0.0824 | 44.0 | 8580 | 0.0988 | 0.5640 | 0.3753 | 0.4503 | 1e-05 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.6.0+cu118
- Datasets 3.0.2
- Tokenizers 0.21.1
- Downloads last month
- 27
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Amoros/Amoros_Beaugosse_test-large-2025_05_20_57422-bs16_freeze
Base model
facebook/dinov2-large