Amoros_Beaugosse_batch_64_epochs_200_test-large-2025_05_26_67930-bs64_freeze
This model is a fine-tuned version of facebook/dinov2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0806
- F1 Micro: 0.6521
- F1 Macro: 0.5228
- Accuracy: 0.5581
- Learning Rate: 0.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate |
---|---|---|---|---|---|---|---|
No log | 1.0 | 489 | 0.1057 | 0.4791 | 0.1939 | 0.3399 | 0.001 |
0.2268 | 2.0 | 978 | 0.0992 | 0.5171 | 0.2748 | 0.3829 | 0.001 |
0.1131 | 3.0 | 1467 | 0.0967 | 0.5206 | 0.3019 | 0.3833 | 0.001 |
0.1072 | 4.0 | 1956 | 0.0958 | 0.5299 | 0.3230 | 0.3974 | 0.001 |
0.1049 | 5.0 | 2445 | 0.0957 | 0.5463 | 0.3499 | 0.4164 | 0.001 |
0.1038 | 6.0 | 2934 | 0.0949 | 0.5293 | 0.3454 | 0.3913 | 0.001 |
0.1041 | 7.0 | 3423 | 0.0951 | 0.5530 | 0.3660 | 0.4262 | 0.001 |
0.1035 | 8.0 | 3912 | 0.0956 | 0.5493 | 0.3504 | 0.4249 | 0.001 |
0.1028 | 9.0 | 4401 | 0.0945 | 0.5652 | 0.3616 | 0.4453 | 0.001 |
0.1029 | 10.0 | 4890 | 0.0934 | 0.5579 | 0.3733 | 0.4259 | 0.001 |
0.1037 | 11.0 | 5379 | 0.0938 | 0.5515 | 0.3631 | 0.4218 | 0.001 |
0.1026 | 12.0 | 5868 | 0.0932 | 0.5646 | 0.3631 | 0.4364 | 0.001 |
0.1024 | 13.0 | 6357 | 0.0923 | 0.5593 | 0.3755 | 0.4256 | 0.001 |
0.1025 | 14.0 | 6846 | 0.0913 | 0.5802 | 0.3898 | 0.4561 | 0.001 |
0.1012 | 15.0 | 7335 | 0.0920 | 0.5718 | 0.3889 | 0.4462 | 0.001 |
0.1016 | 16.0 | 7824 | 0.0916 | 0.5697 | 0.3873 | 0.4455 | 0.001 |
0.1016 | 17.0 | 8313 | 0.0931 | 0.5598 | 0.3802 | 0.4297 | 0.001 |
0.102 | 18.0 | 8802 | 0.0925 | 0.5640 | 0.3654 | 0.4359 | 0.001 |
0.1017 | 19.0 | 9291 | 0.0914 | 0.5738 | 0.3874 | 0.4467 | 0.001 |
0.1019 | 20.0 | 9780 | 0.0917 | 0.5687 | 0.3728 | 0.4417 | 0.001 |
0.1006 | 21.0 | 10269 | 0.0881 | 0.5932 | 0.4237 | 0.4712 | 0.0001 |
0.0968 | 22.0 | 10758 | 0.0870 | 0.6013 | 0.4384 | 0.4823 | 0.0001 |
0.0946 | 23.0 | 11247 | 0.0866 | 0.6039 | 0.4367 | 0.4853 | 0.0001 |
0.0942 | 24.0 | 11736 | 0.0861 | 0.6062 | 0.4452 | 0.4893 | 0.0001 |
0.0938 | 25.0 | 12225 | 0.0854 | 0.6100 | 0.4490 | 0.4926 | 0.0001 |
0.0929 | 26.0 | 12714 | 0.0853 | 0.6145 | 0.4482 | 0.5026 | 0.0001 |
0.0921 | 27.0 | 13203 | 0.0851 | 0.6144 | 0.4441 | 0.4999 | 0.0001 |
0.0917 | 28.0 | 13692 | 0.0845 | 0.6152 | 0.4457 | 0.5013 | 0.0001 |
0.0913 | 29.0 | 14181 | 0.0846 | 0.6143 | 0.4484 | 0.4990 | 0.0001 |
0.0916 | 30.0 | 14670 | 0.0843 | 0.6204 | 0.4621 | 0.5092 | 0.0001 |
0.0911 | 31.0 | 15159 | 0.0841 | 0.6214 | 0.4646 | 0.5116 | 0.0001 |
0.0901 | 32.0 | 15648 | 0.0839 | 0.6225 | 0.4649 | 0.5123 | 0.0001 |
0.0904 | 33.0 | 16137 | 0.0837 | 0.6267 | 0.4654 | 0.5180 | 0.0001 |
0.0898 | 34.0 | 16626 | 0.0834 | 0.6241 | 0.4665 | 0.5132 | 0.0001 |
0.089 | 35.0 | 17115 | 0.0834 | 0.6271 | 0.4762 | 0.5179 | 0.0001 |
0.0894 | 36.0 | 17604 | 0.0832 | 0.6244 | 0.4721 | 0.5158 | 0.0001 |
0.0891 | 37.0 | 18093 | 0.0831 | 0.6264 | 0.4712 | 0.5174 | 0.0001 |
0.0891 | 38.0 | 18582 | 0.0832 | 0.6288 | 0.4690 | 0.5194 | 0.0001 |
0.0889 | 39.0 | 19071 | 0.0828 | 0.6318 | 0.4810 | 0.5250 | 0.0001 |
0.0885 | 40.0 | 19560 | 0.0826 | 0.6316 | 0.4825 | 0.5232 | 0.0001 |
0.0876 | 41.0 | 20049 | 0.0827 | 0.6268 | 0.4703 | 0.5165 | 0.0001 |
0.0877 | 42.0 | 20538 | 0.0822 | 0.6324 | 0.4893 | 0.5240 | 0.0001 |
0.0879 | 43.0 | 21027 | 0.0819 | 0.6371 | 0.5045 | 0.5321 | 0.0001 |
0.0877 | 44.0 | 21516 | 0.0825 | 0.6295 | 0.4782 | 0.5218 | 0.0001 |
0.0867 | 45.0 | 22005 | 0.0824 | 0.6305 | 0.4814 | 0.5237 | 0.0001 |
0.0867 | 46.0 | 22494 | 0.0821 | 0.6324 | 0.4893 | 0.5245 | 0.0001 |
0.0873 | 47.0 | 22983 | 0.0818 | 0.6362 | 0.4933 | 0.5308 | 0.0001 |
0.0868 | 48.0 | 23472 | 0.0817 | 0.6393 | 0.4984 | 0.5357 | 0.0001 |
0.0868 | 49.0 | 23961 | 0.0821 | 0.6329 | 0.4864 | 0.5260 | 0.0001 |
0.0865 | 50.0 | 24450 | 0.0819 | 0.6332 | 0.4850 | 0.5254 | 0.0001 |
0.0869 | 51.0 | 24939 | 0.0817 | 0.6373 | 0.4914 | 0.5332 | 0.0001 |
0.0865 | 52.0 | 25428 | 0.0821 | 0.6343 | 0.5013 | 0.5295 | 0.0001 |
0.0863 | 53.0 | 25917 | 0.0815 | 0.6403 | 0.4996 | 0.5375 | 0.0001 |
0.0862 | 54.0 | 26406 | 0.0818 | 0.6374 | 0.4899 | 0.5323 | 0.0001 |
0.086 | 55.0 | 26895 | 0.0818 | 0.6326 | 0.4935 | 0.5249 | 0.0001 |
0.086 | 56.0 | 27384 | 0.0816 | 0.6393 | 0.4962 | 0.5364 | 0.0001 |
0.0854 | 57.0 | 27873 | 0.0817 | 0.6391 | 0.4981 | 0.5363 | 0.0001 |
0.0856 | 58.0 | 28362 | 0.0815 | 0.6428 | 0.4922 | 0.5402 | 0.0001 |
0.0856 | 59.0 | 28851 | 0.0814 | 0.6360 | 0.4918 | 0.5308 | 0.0001 |
0.0852 | 60.0 | 29340 | 0.0813 | 0.6472 | 0.5072 | 0.5491 | 0.0001 |
0.0852 | 61.0 | 29829 | 0.0816 | 0.6377 | 0.4847 | 0.5339 | 0.0001 |
0.0845 | 62.0 | 30318 | 0.0810 | 0.6401 | 0.4960 | 0.5367 | 0.0001 |
0.0851 | 63.0 | 30807 | 0.0814 | 0.6433 | 0.4912 | 0.5433 | 0.0001 |
0.0847 | 64.0 | 31296 | 0.0810 | 0.6383 | 0.4912 | 0.5330 | 0.0001 |
0.0851 | 65.0 | 31785 | 0.0808 | 0.6409 | 0.5117 | 0.5383 | 0.0001 |
0.0841 | 66.0 | 32274 | 0.0807 | 0.6437 | 0.4995 | 0.5417 | 0.0001 |
0.0841 | 67.0 | 32763 | 0.0808 | 0.6439 | 0.5073 | 0.5435 | 0.0001 |
0.0842 | 68.0 | 33252 | 0.0809 | 0.6405 | 0.5073 | 0.5369 | 0.0001 |
0.0843 | 69.0 | 33741 | 0.0810 | 0.6391 | 0.4926 | 0.5361 | 0.0001 |
0.0839 | 70.0 | 34230 | 0.0806 | 0.6425 | 0.5095 | 0.5428 | 0.0001 |
0.0843 | 71.0 | 34719 | 0.0809 | 0.6404 | 0.5159 | 0.5360 | 0.0001 |
0.0838 | 72.0 | 35208 | 0.0813 | 0.6470 | 0.5043 | 0.5485 | 0.0001 |
0.0836 | 73.0 | 35697 | 0.0804 | 0.6405 | 0.5029 | 0.5349 | 0.0001 |
0.084 | 74.0 | 36186 | 0.0806 | 0.6441 | 0.5028 | 0.5432 | 0.0001 |
0.0836 | 75.0 | 36675 | 0.0807 | 0.6421 | 0.5134 | 0.5387 | 0.0001 |
0.0831 | 76.0 | 37164 | 0.0805 | 0.6427 | 0.5133 | 0.5408 | 0.0001 |
0.0838 | 77.0 | 37653 | 0.0806 | 0.6467 | 0.5015 | 0.5474 | 0.0001 |
0.0827 | 78.0 | 38142 | 0.0808 | 0.6402 | 0.4998 | 0.5396 | 0.0001 |
0.0833 | 79.0 | 38631 | 0.0805 | 0.6475 | 0.5048 | 0.5496 | 0.0001 |
0.0821 | 80.0 | 39120 | 0.0798 | 0.6531 | 0.5148 | 0.5560 | 1e-05 |
0.0814 | 81.0 | 39609 | 0.0796 | 0.6533 | 0.5242 | 0.5555 | 1e-05 |
0.081 | 82.0 | 40098 | 0.0795 | 0.6568 | 0.5260 | 0.5633 | 1e-05 |
0.0808 | 83.0 | 40587 | 0.0794 | 0.6562 | 0.5293 | 0.5608 | 1e-05 |
0.0802 | 84.0 | 41076 | 0.0792 | 0.6567 | 0.5257 | 0.5616 | 1e-05 |
0.0807 | 85.0 | 41565 | 0.0794 | 0.6577 | 0.5262 | 0.5621 | 1e-05 |
0.0799 | 86.0 | 42054 | 0.0794 | 0.6569 | 0.5265 | 0.5616 | 1e-05 |
0.0801 | 87.0 | 42543 | 0.0794 | 0.6570 | 0.5198 | 0.5627 | 1e-05 |
0.0803 | 88.0 | 43032 | 0.0794 | 0.6571 | 0.5282 | 0.5642 | 1e-05 |
0.0801 | 89.0 | 43521 | 0.0794 | 0.6551 | 0.5200 | 0.5597 | 1e-05 |
0.0799 | 90.0 | 44010 | 0.0794 | 0.6550 | 0.5186 | 0.5598 | 1e-05 |
0.0799 | 91.0 | 44499 | 0.0793 | 0.6558 | 0.5292 | 0.5622 | 0.0000 |
0.0799 | 92.0 | 44988 | 0.0793 | 0.6554 | 0.5248 | 0.5610 | 0.0000 |
0.0799 | 93.0 | 45477 | 0.0794 | 0.6563 | 0.5230 | 0.5609 | 0.0000 |
0.0797 | 94.0 | 45966 | 0.0794 | 0.6533 | 0.5214 | 0.5572 | 0.0000 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.6.0+cu118
- Datasets 3.0.2
- Tokenizers 0.21.1
- Downloads last month
- 462
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Amoros/Amoros_Beaugosse_batch_64_epochs_200_test-large-2025_05_26_67930-bs64_freeze
Base model
facebook/dinov2-large