Instruction Following GPT-OSS Model (24 Experts)
Project: https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/
Introduction
This is a pruned variant of OpenAI's GPT-OSS-20B model, reduced to 24 experts per layer based on activation patterns from the AmanPriyanshu/GPT-OSS-20B MoE Expert Activations dataset. We analyzed router decisions across evaluation benchmarks to identify and retain experts most relevant for instruction following tasks.
⚠️ Experimental Model: This is an experimental pruned model that may not work well - check the examples below to see if the outputs meet your needs before use.
This pruning approach reduces the model size while attempting to preserve performance on the target domain.
Model Architecture & Statistics
Metric | Value |
---|---|
Base Model | openai/gpt-oss-20b |
Architecture | Mixture-of-Experts Transformer |
Total Parameters | ~16.1B (pruned from 21B) |
Original Experts per Layer | 32 |
Pruned Experts per Layer | 24 |
Layers | 24 |
Top-k Routing | 4 |
Context Length | 128K tokens |
Attention Heads | 64 (Query), 8 (Key-Value) |
Residual Dimension | 2880 |
Attention Pattern | Alternating dense & sliding window (128 tokens) |
Positional Encoding | RoPE (Rotary Position Embedding) |
Normalization | RMSNorm |
Precision | BF16 |
License | Apache 2.0 |
Specialization | Instruction Following |
Pruning Methodology
What is Expert Pruning?
Mixture-of-Experts models contain multiple specialized sub-networks (experts) per layer. During inference, only a subset of experts are activated for each token. Expert pruning involves:
- Analyzing Usage Patterns: Tracking which experts activate most frequently for specific tasks
- Removing Underutilized Experts: Discarding experts with low activation rates for the target domain
- Preserving Router Functionality: Maintaining the routing mechanism with fewer available experts
Our Approach
- Data-Driven Selection: Used activation patterns from instruction following evaluation tasks
- Systematic Reduction: Reduced from 32 to 24 experts per layer
- No Retraining: Direct removal without additional training steps
Performance & Applications
Pruning Benefits
- Smaller Memory Footprint: 75.0% of original expert parameters
- Reduced Computational Load: Fewer routing decisions during inference
- Focused Capabilities: Retains experts relevant to instruction following tasks
Use Cases
- Speculative Decoding: Draft model for full GPT-OSS-20B
- Resource-Constrained Deployment: Edge devices, mobile applications
- Research: Study expert specialization in MoE models
- Fine-tuning: Smaller base model for domain adaptation
Note: Performance may vary depending on how well the pruned experts match your specific use case.
Motivation & Expert Selection
This instruction-following model leverages experts that excelled at constraint satisfaction tasks from Tulu3 Persona Instruction Following dataset. These experts specialize in precise adherence to user specifications and formatting requirements.
The expert selection process utilized our comprehensive analysis of router activation patterns across multiple evaluation benchmarks:
- GPQA: Graduate-level questions in physics, chemistry, biology (Diamond & Expert subsets)
- MMLU/MMLU-Pro: Comprehensive knowledge across 57+ subjects including science, medicine, law
- SORRY-Bench: Safety evaluation across harmful content categories
- Tulu3: Persona-driven instruction following with verifiable constraints
- Polyglot-or-Not: Multilingual factual completion tasks
By identifying experts that consistently activated for instruction following tasks, we created this specialized model that maintains domain expertise while significantly reducing computational requirements from 32 to 24 experts per layer.
Dataset & Analysis Foundation
This model is based on analysis from the GPT-OSS-20B MoE Expert Activations dataset available at: 🔗 https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations
The dataset contains router activation patterns from OpenAI's GPT-OSS-20B model across diverse evaluation benchmarks, enabling the creation of these domain-optimized models through systematic expert pruning.
Pruning Methodology
Our approach involves:
- Activation Analysis: Comprehensive evaluation of expert usage patterns across domain-specific tasks
- Expert Ranking: Identification of the most frequently activated experts for target domains
- Systematic Pruning: Reduction from 32 to 24 experts while preserving router functionality
- Quality Validation: Testing to ensure maintained performance on target tasks
This is a direct pruning approach - no additional training was performed. The model inherits all capabilities from the original GPT-OSS-20B with focused expert selection.
Usage
CPU Inference
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the specialized model on CPU
model = AutoModelForCausalLM.from_pretrained(
"AmanPriyanshu/gpt-oss-16.1b-specialized-instruction_following-pruned-moe-only-24-experts",
torch_dtype=torch.bfloat16,
device_map="cpu",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-16.1b-specialized-instruction_following-pruned-moe-only-24-experts")
# Generate with the model
messages = [
{"role": "user", "content": "Write a formal email to a professor requesting a meeting, including: subject line, greeting, purpose, proposed times, and professional closing."}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
reasoning_effort="medium"
)
# Ensure inputs are on the same device as model
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.1,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode only the generated part
input_length = inputs['input_ids'].shape[1]
response_tokens = outputs[0][input_length:]
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
print(response)
Apple Silicon (MPS) Inference
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Check MPS availability and load model
device = "mps" if torch.backends.mps.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
"AmanPriyanshu/gpt-oss-16.1b-specialized-instruction_following-pruned-moe-only-24-experts",
torch_dtype=torch.float16, # Better MPS compatibility
device_map=device,
trust_remote_code=True,
low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-16.1b-specialized-instruction_following-pruned-moe-only-24-experts")
# Generate with the model
messages = [
{"role": "user", "content": "Write a formal email to a professor requesting a meeting, including: subject line, greeting, purpose, proposed times, and professional closing."}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
reasoning_effort="medium"
)
# Move inputs to model device
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
# Use torch.no_grad for MPS stability
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.1,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True
)
# Decode only the generated part
input_length = inputs['input_ids'].shape[1]
response_tokens = outputs[0][input_length:]
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
print(response)
GPU Inference
For CUDA GPU inference, the models work with minimal modifications from the CPU example above. Simply change:
device_map="auto" # Will automatically use GPU if available
torch_dtype=torch.bfloat16 # or torch.float16
Model Examples
The following examples demonstrate the model's performance on instruction following tasks:
Example 1
Question: Write a formal email to a professor requesting a meeting, including: subject line, greeting, purpose, proposed times, and professional closing.
Response:
<|channel|>analysis<|message|>Need formal email.<|end|><|start|>assistant<|channel|>final<|message|>**Subject:** Request for Meeting – Discussion of Research Project Progress
Dear Professor [Last Name],
I hope this message finds you well. I am writing to request a brief meeting with you to discuss the current status of my research project on [brief topic], as well as to seek your guidance on the next steps.
Could we meet at one of the following times next week?
- Tuesday, Aug 18 at 10:00 a.m.
- Wednesday, Aug 19 at 2:00 p.m.
- Thursday, Aug 20 at 11:30 a.m.
If any of these slots are inconvenient, I would be happy to adjust to a time that better fits your schedule.
Thank you for your time and consideration. I look forward to our conversation.
Sincerely,
[Your Full Name]
[Your Program / Department]
[University Name]
[Email Address] | [Phone Number]<|return|>
Example 2
Question: Create a numbered list of steps for making scrambled eggs, using exactly 6 steps.
Response:
<|channel|>analysis<|message|>Need 6 steps numbered.<|end|><|start|>assistant<|channel|>final<|message|>1. **Gather ingredients and tools** – Get 2–3 eggs, a pinch of salt, pepper, a splash of milk or water (optional), a non‑stick skillet, a spatula, and a small bowl.
2. **Whisk the eggs** – Crack the eggs into the bowl, add salt, pepper, and milk or water if desired, then beat until the mixture is uniformly light and slightly frothy.
3. **Heat the skillet** – Place the skillet over medium heat and add a small amount of butter or oil, letting it melt and coat the surface.
4. **Pour the eggs in** – Once the butter is foamy (but not browned), pour the whisked eggs into the skillet, spreading them evenly.
5. **Cook and stir** – Let the eggs sit for a few seconds until the edges set, then gently stir with the spatula, pushing the cooked portions toward the center while letting the uncooked parts flow to the edges. Continue until the eggs are softly set but still slightly runny.
6. **Serve immediately** – Remove the skillet from heat, transfer the scrambled eggs to a plate, and enjoy hot, optionally garnishing with fresh herbs or cheese.<|return|>
Example 3
Question: Summarize the water cycle in exactly 50 words, no more, no less.
Response:
<|channel|>analysis<|message|>Need 50 words exactly. Let's craft: "Water evaporates from oceans, lakes, and soil, forming clouds. Condensation cools them into precipitation, falling as rain or snow. Groundwater infiltrates, replenishing aquifers, while runoff channels water back to seas. The cycle repeats, driven by solar energy, sustaining life and shaping Earth's climate." Count words. Let's count: Water(1) evaporates2 from3 oceans,4 lakes,5 and6 soil,7 forming8 clouds.9 Condensation10 cools11 them12 into13 precipitation,14 falling15 as16 rain17 or18 snow.19 Groundwater20 infiltrates,21 replenishing22 aquifers,23 while24 runoff25 channels26 water27 back28 to29 seas.30 The31 cycle32 repeats,33 driven34 by35 solar36 energy,37 sustaining38 life39 and40 shaping41 Earth's42 climate43. Need 7 more words. Add: "for"44 "all"45 "living"46 "organisms"47 "and"48 "ecosystems"49 "daily"50. Good.<|end|><|start|>assistant<|channel|>final<|message|>Water evaporates from oceans, lakes, and soil, forming clouds. Condensation cools them into precipitation, falling as rain or snow. Groundwater infiltrates, replenishing aquifers, while runoff channels water back to seas. The cycle repeats, driven by solar energy, sustaining life and shaping Earth's climate for all living organisms and ecosystems daily.<|return|>
Citation
If you use this model in your research, please cite:
@misc{priyanshu2025gptoss,
title={{GPT-OSS MoE Expert Fingerprinting: Analyzing Expert Activation Patterns in Mixture of Experts Models}},
author={Priyanshu, Aman and Vijay, Supriti},
year={2025},
howpublished={\url{https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/}},
note={Interactive analysis tool for expert activation patterns in MoE architectures}
}
References & Resources
- Original Model: OpenAI GPT-OSS Model Card
- Model Hub: GPT-OSS-20B on Hugging Face
- Expert Analysis Dataset: GPT-OSS-20B MoE Expert Activations
- Project Page: GPT-OSS MoE Expert Fingerprinting
- GitHub Repository: OpenAI GPT-OSS
- Downloads last month
- 3