You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

mdeberta-v3-base_regression_5_seed420_NL-IT

This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7614
  • Mse: 2.8217
  • Rmse: 1.6798
  • Mae: 1.0340
  • R2: 0.1242
  • F1: 0.7343
  • Precision: 0.7402
  • Recall: 0.7466
  • Accuracy: 0.7466

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mse Rmse Mae R2 F1 Precision Recall Accuracy
1.2168 0.2105 100 1.0410 3.8466 1.9613 1.4687 -0.2433 0.5333 0.4444 0.6667 0.6667
1.053 0.4211 200 1.0115 3.3031 1.8174 1.4738 -0.0676 0.5333 0.4444 0.6667 0.6667
1.0263 0.6316 300 0.9647 2.7400 1.6553 1.4206 0.1144 0.5333 0.4444 0.6667 0.6667
0.9754 0.8421 400 0.9284 3.0990 1.7604 1.3448 -0.0017 0.5333 0.4444 0.6667 0.6667
0.934 1.0526 500 0.8970 2.9576 1.7198 1.3110 0.0440 0.5388 0.7788 0.6690 0.6690
0.8667 1.2632 600 0.8632 2.8116 1.6768 1.2718 0.0912 0.6366 0.7004 0.7011 0.7011
0.8634 1.4737 700 0.8375 2.7817 1.6679 1.2347 0.1009 0.6477 0.6730 0.6940 0.6940
0.8294 1.6842 800 0.8966 3.0513 1.7468 1.2882 0.0137 0.6862 0.6831 0.6916 0.6916
0.819 1.8947 900 0.9153 3.1499 1.7748 1.3015 -0.0181 0.6861 0.6845 0.6880 0.6880
0.7417 2.1053 1000 0.8207 2.8460 1.6870 1.1782 0.0801 0.6577 0.6891 0.7034 0.7034
0.7342 2.3158 1100 0.8174 2.8473 1.6874 1.1696 0.0797 0.6961 0.7058 0.7200 0.7200
0.695 2.5263 1200 0.8344 2.9407 1.7149 1.1834 0.0495 0.7104 0.7086 0.7129 0.7129
0.7682 2.7368 1300 0.8055 2.8003 1.6734 1.1563 0.0949 0.7252 0.7258 0.7367 0.7367
0.702 2.9474 1400 0.7758 2.6921 1.6408 1.1185 0.1298 0.7143 0.7198 0.7319 0.7319
0.6973 3.1579 1500 0.7973 2.8367 1.6842 1.1395 0.0831 0.7346 0.7332 0.7367 0.7367
0.6206 3.3684 1600 0.7865 2.7933 1.6713 1.1160 0.0971 0.7216 0.7240 0.7355 0.7355
0.6859 3.5789 1700 0.7750 2.7686 1.6639 1.1000 0.1051 0.7081 0.7257 0.7343 0.7343
0.6493 3.7895 1800 0.7721 2.7292 1.6520 1.0992 0.1178 0.7145 0.7313 0.7390 0.7390
0.6285 4.0 1900 0.8107 2.8467 1.6872 1.1415 0.0799 0.7194 0.7186 0.7295 0.7295
0.5887 4.2105 2000 0.8451 3.0451 1.7450 1.1710 0.0158 0.7240 0.7309 0.7200 0.7200
0.6098 4.4211 2100 0.7592 2.6481 1.6273 1.0817 0.1441 0.7194 0.7289 0.7390 0.7390
0.5907 4.6316 2200 0.7595 2.7178 1.6486 1.0643 0.1215 0.7230 0.7334 0.7426 0.7426
0.5555 4.8421 2300 0.7761 2.7759 1.6661 1.0820 0.1028 0.7304 0.7289 0.7378 0.7378
0.6021 5.0526 2400 0.7987 2.8809 1.6973 1.1033 0.0688 0.7221 0.7202 0.7295 0.7295
0.5504 5.2632 2500 0.7843 2.8168 1.6783 1.0895 0.0895 0.7370 0.7352 0.7426 0.7426
0.5052 5.4737 2600 0.7873 2.8846 1.6984 1.0834 0.0676 0.7401 0.7417 0.7509 0.7509
0.5171 5.6842 2700 0.7808 2.8328 1.6831 1.0866 0.0844 0.7317 0.7297 0.7367 0.7367
0.5395 5.8947 2800 0.7652 2.7540 1.6595 1.0682 0.1098 0.7322 0.7305 0.7390 0.7390
0.5247 6.1053 2900 0.7771 2.8384 1.6848 1.0703 0.0826 0.7256 0.7281 0.7390 0.7390
0.4707 6.3158 3000 0.8009 2.9554 1.7191 1.0902 0.0447 0.7231 0.7208 0.7284 0.7284
0.5139 6.5263 3100 0.7848 2.9021 1.7035 1.0748 0.0620 0.7360 0.7357 0.7450 0.7450
0.4924 6.7368 3200 0.7731 2.8285 1.6818 1.0634 0.0857 0.7182 0.7337 0.7414 0.7414
0.4907 6.9474 3300 0.7731 2.8268 1.6813 1.0574 0.0863 0.7209 0.7268 0.7378 0.7378
0.4836 7.1579 3400 0.7811 2.8490 1.6879 1.0718 0.0791 0.7252 0.7236 0.7331 0.7331
0.458 7.3684 3500 0.7863 2.9145 1.7072 1.0651 0.0580 0.7186 0.7201 0.7319 0.7319
0.4281 7.5789 3600 0.7782 2.8838 1.6982 1.0606 0.0679 0.7388 0.7377 0.7461 0.7461
0.4267 7.7895 3700 0.7914 2.9346 1.7131 1.0837 0.0515 0.7438 0.7452 0.7426 0.7426
0.474 8.0 3800 0.7600 2.7846 1.6687 1.0396 0.1000 0.7337 0.7350 0.7450 0.7450
0.4033 8.2105 3900 0.7654 2.8418 1.6858 1.0383 0.0815 0.7270 0.7357 0.7450 0.7450
0.4517 8.4211 4000 0.7807 2.9020 1.7035 1.0540 0.0620 0.7193 0.7239 0.7355 0.7355
0.4657 8.6316 4100 0.7809 2.8977 1.7023 1.0572 0.0634 0.7178 0.7212 0.7331 0.7331
0.4225 8.8421 4200 0.7971 2.9923 1.7298 1.0833 0.0328 0.7354 0.7338 0.7378 0.7378
0.4221 9.0526 4300 0.7862 2.9421 1.7153 1.0688 0.0490 0.7256 0.7238 0.7331 0.7331

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
279M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Amala3/mdeberta-v3-base_regression_5_seed420_NL-IT

Finetuned
(193)
this model

Collection including Amala3/mdeberta-v3-base_regression_5_seed420_NL-IT