mdeberta-v3-base_regression_5_seed420_NL-IT
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7614
- Mse: 2.8217
- Rmse: 1.6798
- Mae: 1.0340
- R2: 0.1242
- F1: 0.7343
- Precision: 0.7402
- Recall: 0.7466
- Accuracy: 0.7466
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mse |
Rmse |
Mae |
R2 |
F1 |
Precision |
Recall |
Accuracy |
1.2168 |
0.2105 |
100 |
1.0410 |
3.8466 |
1.9613 |
1.4687 |
-0.2433 |
0.5333 |
0.4444 |
0.6667 |
0.6667 |
1.053 |
0.4211 |
200 |
1.0115 |
3.3031 |
1.8174 |
1.4738 |
-0.0676 |
0.5333 |
0.4444 |
0.6667 |
0.6667 |
1.0263 |
0.6316 |
300 |
0.9647 |
2.7400 |
1.6553 |
1.4206 |
0.1144 |
0.5333 |
0.4444 |
0.6667 |
0.6667 |
0.9754 |
0.8421 |
400 |
0.9284 |
3.0990 |
1.7604 |
1.3448 |
-0.0017 |
0.5333 |
0.4444 |
0.6667 |
0.6667 |
0.934 |
1.0526 |
500 |
0.8970 |
2.9576 |
1.7198 |
1.3110 |
0.0440 |
0.5388 |
0.7788 |
0.6690 |
0.6690 |
0.8667 |
1.2632 |
600 |
0.8632 |
2.8116 |
1.6768 |
1.2718 |
0.0912 |
0.6366 |
0.7004 |
0.7011 |
0.7011 |
0.8634 |
1.4737 |
700 |
0.8375 |
2.7817 |
1.6679 |
1.2347 |
0.1009 |
0.6477 |
0.6730 |
0.6940 |
0.6940 |
0.8294 |
1.6842 |
800 |
0.8966 |
3.0513 |
1.7468 |
1.2882 |
0.0137 |
0.6862 |
0.6831 |
0.6916 |
0.6916 |
0.819 |
1.8947 |
900 |
0.9153 |
3.1499 |
1.7748 |
1.3015 |
-0.0181 |
0.6861 |
0.6845 |
0.6880 |
0.6880 |
0.7417 |
2.1053 |
1000 |
0.8207 |
2.8460 |
1.6870 |
1.1782 |
0.0801 |
0.6577 |
0.6891 |
0.7034 |
0.7034 |
0.7342 |
2.3158 |
1100 |
0.8174 |
2.8473 |
1.6874 |
1.1696 |
0.0797 |
0.6961 |
0.7058 |
0.7200 |
0.7200 |
0.695 |
2.5263 |
1200 |
0.8344 |
2.9407 |
1.7149 |
1.1834 |
0.0495 |
0.7104 |
0.7086 |
0.7129 |
0.7129 |
0.7682 |
2.7368 |
1300 |
0.8055 |
2.8003 |
1.6734 |
1.1563 |
0.0949 |
0.7252 |
0.7258 |
0.7367 |
0.7367 |
0.702 |
2.9474 |
1400 |
0.7758 |
2.6921 |
1.6408 |
1.1185 |
0.1298 |
0.7143 |
0.7198 |
0.7319 |
0.7319 |
0.6973 |
3.1579 |
1500 |
0.7973 |
2.8367 |
1.6842 |
1.1395 |
0.0831 |
0.7346 |
0.7332 |
0.7367 |
0.7367 |
0.6206 |
3.3684 |
1600 |
0.7865 |
2.7933 |
1.6713 |
1.1160 |
0.0971 |
0.7216 |
0.7240 |
0.7355 |
0.7355 |
0.6859 |
3.5789 |
1700 |
0.7750 |
2.7686 |
1.6639 |
1.1000 |
0.1051 |
0.7081 |
0.7257 |
0.7343 |
0.7343 |
0.6493 |
3.7895 |
1800 |
0.7721 |
2.7292 |
1.6520 |
1.0992 |
0.1178 |
0.7145 |
0.7313 |
0.7390 |
0.7390 |
0.6285 |
4.0 |
1900 |
0.8107 |
2.8467 |
1.6872 |
1.1415 |
0.0799 |
0.7194 |
0.7186 |
0.7295 |
0.7295 |
0.5887 |
4.2105 |
2000 |
0.8451 |
3.0451 |
1.7450 |
1.1710 |
0.0158 |
0.7240 |
0.7309 |
0.7200 |
0.7200 |
0.6098 |
4.4211 |
2100 |
0.7592 |
2.6481 |
1.6273 |
1.0817 |
0.1441 |
0.7194 |
0.7289 |
0.7390 |
0.7390 |
0.5907 |
4.6316 |
2200 |
0.7595 |
2.7178 |
1.6486 |
1.0643 |
0.1215 |
0.7230 |
0.7334 |
0.7426 |
0.7426 |
0.5555 |
4.8421 |
2300 |
0.7761 |
2.7759 |
1.6661 |
1.0820 |
0.1028 |
0.7304 |
0.7289 |
0.7378 |
0.7378 |
0.6021 |
5.0526 |
2400 |
0.7987 |
2.8809 |
1.6973 |
1.1033 |
0.0688 |
0.7221 |
0.7202 |
0.7295 |
0.7295 |
0.5504 |
5.2632 |
2500 |
0.7843 |
2.8168 |
1.6783 |
1.0895 |
0.0895 |
0.7370 |
0.7352 |
0.7426 |
0.7426 |
0.5052 |
5.4737 |
2600 |
0.7873 |
2.8846 |
1.6984 |
1.0834 |
0.0676 |
0.7401 |
0.7417 |
0.7509 |
0.7509 |
0.5171 |
5.6842 |
2700 |
0.7808 |
2.8328 |
1.6831 |
1.0866 |
0.0844 |
0.7317 |
0.7297 |
0.7367 |
0.7367 |
0.5395 |
5.8947 |
2800 |
0.7652 |
2.7540 |
1.6595 |
1.0682 |
0.1098 |
0.7322 |
0.7305 |
0.7390 |
0.7390 |
0.5247 |
6.1053 |
2900 |
0.7771 |
2.8384 |
1.6848 |
1.0703 |
0.0826 |
0.7256 |
0.7281 |
0.7390 |
0.7390 |
0.4707 |
6.3158 |
3000 |
0.8009 |
2.9554 |
1.7191 |
1.0902 |
0.0447 |
0.7231 |
0.7208 |
0.7284 |
0.7284 |
0.5139 |
6.5263 |
3100 |
0.7848 |
2.9021 |
1.7035 |
1.0748 |
0.0620 |
0.7360 |
0.7357 |
0.7450 |
0.7450 |
0.4924 |
6.7368 |
3200 |
0.7731 |
2.8285 |
1.6818 |
1.0634 |
0.0857 |
0.7182 |
0.7337 |
0.7414 |
0.7414 |
0.4907 |
6.9474 |
3300 |
0.7731 |
2.8268 |
1.6813 |
1.0574 |
0.0863 |
0.7209 |
0.7268 |
0.7378 |
0.7378 |
0.4836 |
7.1579 |
3400 |
0.7811 |
2.8490 |
1.6879 |
1.0718 |
0.0791 |
0.7252 |
0.7236 |
0.7331 |
0.7331 |
0.458 |
7.3684 |
3500 |
0.7863 |
2.9145 |
1.7072 |
1.0651 |
0.0580 |
0.7186 |
0.7201 |
0.7319 |
0.7319 |
0.4281 |
7.5789 |
3600 |
0.7782 |
2.8838 |
1.6982 |
1.0606 |
0.0679 |
0.7388 |
0.7377 |
0.7461 |
0.7461 |
0.4267 |
7.7895 |
3700 |
0.7914 |
2.9346 |
1.7131 |
1.0837 |
0.0515 |
0.7438 |
0.7452 |
0.7426 |
0.7426 |
0.474 |
8.0 |
3800 |
0.7600 |
2.7846 |
1.6687 |
1.0396 |
0.1000 |
0.7337 |
0.7350 |
0.7450 |
0.7450 |
0.4033 |
8.2105 |
3900 |
0.7654 |
2.8418 |
1.6858 |
1.0383 |
0.0815 |
0.7270 |
0.7357 |
0.7450 |
0.7450 |
0.4517 |
8.4211 |
4000 |
0.7807 |
2.9020 |
1.7035 |
1.0540 |
0.0620 |
0.7193 |
0.7239 |
0.7355 |
0.7355 |
0.4657 |
8.6316 |
4100 |
0.7809 |
2.8977 |
1.7023 |
1.0572 |
0.0634 |
0.7178 |
0.7212 |
0.7331 |
0.7331 |
0.4225 |
8.8421 |
4200 |
0.7971 |
2.9923 |
1.7298 |
1.0833 |
0.0328 |
0.7354 |
0.7338 |
0.7378 |
0.7378 |
0.4221 |
9.0526 |
4300 |
0.7862 |
2.9421 |
1.7153 |
1.0688 |
0.0490 |
0.7256 |
0.7238 |
0.7331 |
0.7331 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1