mdeberta-v3-base_ordinal_5_seed69_multilingual
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2865
- Mse: 2.5355
- Rmse: 1.5923
- Mae: 1.0336
- R2: 0.2365
- F1: 0.7527
- Precision: 0.7544
- Recall: 0.7591
- Accuracy: 0.7591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mse |
Rmse |
Mae |
R2 |
F1 |
Precision |
Recall |
Accuracy |
3.4461 |
0.1449 |
100 |
3.2319 |
3.3564 |
1.8321 |
1.7300 |
-0.0820 |
0.5372 |
0.4484 |
0.6697 |
0.6697 |
3.1709 |
0.2899 |
200 |
2.9852 |
3.1868 |
1.7852 |
1.5359 |
-0.0273 |
0.5372 |
0.4484 |
0.6697 |
0.6697 |
3.0364 |
0.4348 |
300 |
2.8881 |
3.2227 |
1.7952 |
1.5359 |
-0.0389 |
0.5372 |
0.4484 |
0.6697 |
0.6697 |
2.8969 |
0.5797 |
400 |
2.7693 |
3.0057 |
1.7337 |
1.3271 |
0.0311 |
0.5372 |
0.4484 |
0.6697 |
0.6697 |
2.8529 |
0.7246 |
500 |
2.6898 |
2.8148 |
1.6777 |
1.3434 |
0.0926 |
0.5372 |
0.4484 |
0.6697 |
0.6697 |
2.781 |
0.8696 |
600 |
2.6252 |
2.7806 |
1.6675 |
1.3010 |
0.1036 |
0.5372 |
0.4484 |
0.6697 |
0.6697 |
2.6867 |
1.0145 |
700 |
2.5549 |
2.8711 |
1.6944 |
1.2088 |
0.0744 |
0.5893 |
0.6724 |
0.6827 |
0.6827 |
2.4738 |
1.1594 |
800 |
2.5246 |
2.8687 |
1.6937 |
1.1574 |
0.0752 |
0.7006 |
0.6990 |
0.7129 |
0.7129 |
2.4723 |
1.3043 |
900 |
2.4213 |
2.6020 |
1.6131 |
1.1126 |
0.1612 |
0.6983 |
0.7216 |
0.7300 |
0.7300 |
2.5362 |
1.4493 |
1000 |
2.4109 |
2.5506 |
1.5971 |
1.1884 |
0.1778 |
0.7136 |
0.7133 |
0.7259 |
0.7259 |
2.4032 |
1.5942 |
1100 |
2.4424 |
2.7520 |
1.6589 |
1.0799 |
0.1128 |
0.7040 |
0.7158 |
0.7284 |
0.7284 |
2.3445 |
1.7391 |
1200 |
2.3788 |
2.6387 |
1.6244 |
1.0954 |
0.1494 |
0.7336 |
0.7315 |
0.7390 |
0.7390 |
2.364 |
1.8841 |
1300 |
2.3767 |
2.6533 |
1.6289 |
1.0595 |
0.1446 |
0.7150 |
0.7298 |
0.7390 |
0.7390 |
2.3271 |
2.0290 |
1400 |
2.4050 |
2.7684 |
1.6638 |
1.1060 |
0.1076 |
0.7180 |
0.7161 |
0.7268 |
0.7268 |
2.1281 |
2.1739 |
1500 |
2.4391 |
2.7920 |
1.6709 |
1.0775 |
0.0999 |
0.7238 |
0.7231 |
0.7341 |
0.7341 |
2.1314 |
2.3188 |
1600 |
2.3782 |
2.6688 |
1.6337 |
1.0799 |
0.1396 |
0.7338 |
0.7323 |
0.7357 |
0.7357 |
2.1279 |
2.4638 |
1700 |
2.3962 |
2.7325 |
1.6530 |
1.0538 |
0.1191 |
0.7227 |
0.7335 |
0.7431 |
0.7431 |
2.0826 |
2.6087 |
1800 |
2.3376 |
2.6142 |
1.6168 |
1.0449 |
0.1573 |
0.7335 |
0.7351 |
0.7455 |
0.7455 |
2.1644 |
2.7536 |
1900 |
2.3175 |
2.5522 |
1.5976 |
1.0791 |
0.1772 |
0.7312 |
0.7293 |
0.7341 |
0.7341 |
2.0112 |
2.8986 |
2000 |
2.2738 |
2.5220 |
1.5881 |
1.0261 |
0.1870 |
0.7459 |
0.7452 |
0.7537 |
0.7537 |
1.9844 |
3.0435 |
2100 |
2.3487 |
2.6860 |
1.6389 |
1.0122 |
0.1341 |
0.7405 |
0.7410 |
0.7504 |
0.7504 |
1.8639 |
3.1884 |
2200 |
2.3881 |
2.7716 |
1.6648 |
1.0082 |
0.1065 |
0.7447 |
0.7431 |
0.7471 |
0.7471 |
1.7698 |
3.3333 |
2300 |
2.4045 |
2.8018 |
1.6739 |
0.9927 |
0.0968 |
0.7484 |
0.7465 |
0.7520 |
0.7520 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1