mdeberta-v3-base_ordinal_5_seed420_EN-NL
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3573
- Mse: 2.7856
- Rmse: 1.6690
- Mae: 0.9730
- R2: 0.2132
- F1: 0.7591
- Precision: 0.7626
- Recall: 0.7648
- Accuracy: 0.7648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mse |
Rmse |
Mae |
R2 |
F1 |
Precision |
Recall |
Accuracy |
3.5638 |
0.2141 |
100 |
3.5430 |
3.6731 |
1.9165 |
1.8782 |
-0.0652 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
3.2282 |
0.4283 |
200 |
3.1915 |
3.7250 |
1.9300 |
1.6743 |
-0.0802 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
3.0493 |
0.6424 |
300 |
3.0534 |
3.1846 |
1.7845 |
1.6116 |
0.0765 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
2.9037 |
0.8565 |
400 |
2.9377 |
3.3112 |
1.8197 |
1.4246 |
0.0398 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
2.7728 |
1.0707 |
500 |
2.7732 |
3.0639 |
1.7504 |
1.3655 |
0.1115 |
0.6107 |
0.6498 |
0.6586 |
0.6586 |
2.6147 |
1.2848 |
600 |
2.6980 |
3.0434 |
1.7445 |
1.3281 |
0.1174 |
0.6937 |
0.6983 |
0.6912 |
0.6912 |
2.5372 |
1.4989 |
700 |
2.5946 |
3.0024 |
1.7327 |
1.2220 |
0.1293 |
0.6905 |
0.6908 |
0.6984 |
0.6984 |
2.4555 |
1.7131 |
800 |
2.4696 |
2.7563 |
1.6602 |
1.1809 |
0.2007 |
0.7178 |
0.7173 |
0.7226 |
0.7226 |
2.4496 |
1.9272 |
900 |
2.4942 |
2.6828 |
1.6379 |
1.2232 |
0.2220 |
0.7327 |
0.7355 |
0.7310 |
0.7310 |
2.298 |
2.1413 |
1000 |
2.5051 |
3.0072 |
1.7341 |
1.1086 |
0.1279 |
0.7176 |
0.7205 |
0.7262 |
0.7262 |
2.2482 |
2.3555 |
1100 |
2.4543 |
2.8938 |
1.7011 |
1.0748 |
0.1608 |
0.7215 |
0.7344 |
0.7358 |
0.7358 |
2.0678 |
2.5696 |
1200 |
2.3826 |
2.8914 |
1.7004 |
1.0338 |
0.1615 |
0.7434 |
0.7460 |
0.7419 |
0.7419 |
2.0865 |
2.7837 |
1300 |
2.3957 |
2.8504 |
1.6883 |
1.0145 |
0.1734 |
0.7383 |
0.7397 |
0.7443 |
0.7443 |
2.1771 |
2.9979 |
1400 |
2.3659 |
2.7370 |
1.6544 |
1.0579 |
0.2063 |
0.7438 |
0.7434 |
0.7443 |
0.7443 |
2.0164 |
3.2120 |
1500 |
2.3783 |
2.9071 |
1.7050 |
1.0398 |
0.1570 |
0.7462 |
0.7497 |
0.7443 |
0.7443 |
1.9577 |
3.4261 |
1600 |
2.4072 |
2.8902 |
1.7001 |
1.0543 |
0.1619 |
0.7471 |
0.7549 |
0.7443 |
0.7443 |
1.8874 |
3.6403 |
1700 |
2.3547 |
2.7913 |
1.6707 |
0.9795 |
0.1905 |
0.7523 |
0.7537 |
0.7575 |
0.7575 |
1.8746 |
3.8544 |
1800 |
2.3244 |
2.6767 |
1.6361 |
1.0024 |
0.2238 |
0.7507 |
0.7499 |
0.7527 |
0.7527 |
1.9356 |
4.0685 |
1900 |
2.3361 |
2.8166 |
1.6783 |
1.0217 |
0.1832 |
0.7568 |
0.7573 |
0.7563 |
0.7563 |
1.7507 |
4.2827 |
2000 |
2.3419 |
2.7575 |
1.6606 |
0.9867 |
0.2003 |
0.7506 |
0.7512 |
0.7551 |
0.7551 |
1.7485 |
4.4968 |
2100 |
2.3295 |
2.8323 |
1.6830 |
1.0109 |
0.1786 |
0.7573 |
0.7587 |
0.7563 |
0.7563 |
1.7336 |
4.7109 |
2200 |
2.3332 |
2.7262 |
1.6511 |
0.9578 |
0.2094 |
0.7565 |
0.7590 |
0.7624 |
0.7624 |
1.739 |
4.9251 |
2300 |
2.4113 |
2.9928 |
1.7300 |
1.0314 |
0.1321 |
0.7415 |
0.7454 |
0.7394 |
0.7394 |
1.6066 |
5.1392 |
2400 |
2.4276 |
3.0145 |
1.7362 |
1.0265 |
0.1258 |
0.7613 |
0.7686 |
0.7587 |
0.7587 |
1.6271 |
5.3533 |
2500 |
2.3737 |
2.9373 |
1.7138 |
0.9783 |
0.1482 |
0.7597 |
0.7595 |
0.7600 |
0.7600 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1