bertweet-base_regression_7_seed13_EN
This model is a fine-tuned version of vinai/bertweet-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0892
- Mse: 5.5584
- Rmse: 2.3576
- Mae: 1.3807
- R2: 0.2207
- F1: 0.7757
- Precision: 0.7780
- Recall: 0.7797
- Accuracy: 0.7797
Model description
This is the best-performing REGRESSION model for English irony detection. The model was fine-tuned both a mix of English and Dutch tweets.
The model predicts one numerical value indicating irony likelihood, where 0 is not ironic and 6 is ironic.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mse |
Rmse |
Mae |
R2 |
F1 |
Precision |
Recall |
Accuracy |
1.7333 |
0.4630 |
100 |
1.8475 |
9.7883 |
3.1286 |
2.2877 |
-0.4094 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
1.6952 |
0.9259 |
200 |
1.7889 |
8.8708 |
2.9784 |
2.2442 |
-0.2773 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
1.6175 |
1.3889 |
300 |
1.6295 |
7.6123 |
2.7590 |
2.0223 |
-0.0961 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
1.4401 |
1.8519 |
400 |
1.4962 |
6.6368 |
2.5762 |
1.8601 |
0.0444 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
1.2553 |
2.3148 |
500 |
1.3949 |
5.9003 |
2.4291 |
1.7518 |
0.1504 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
1.2296 |
2.7778 |
600 |
1.3520 |
5.9339 |
2.4360 |
1.6730 |
0.1456 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
1.0909 |
3.2407 |
700 |
1.2565 |
5.3251 |
2.3076 |
1.5831 |
0.2332 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
1.0031 |
3.7037 |
800 |
1.2159 |
4.7598 |
2.1817 |
1.5709 |
0.3146 |
0.4570 |
0.3669 |
0.6057 |
0.6057 |
0.9833 |
4.1667 |
900 |
1.1544 |
4.6141 |
2.1480 |
1.5031 |
0.3356 |
0.7296 |
0.8018 |
0.7572 |
0.7572 |
0.825 |
4.6296 |
1000 |
1.1512 |
5.0019 |
2.2365 |
1.4608 |
0.2798 |
0.7757 |
0.7943 |
0.7859 |
0.7859 |
0.8187 |
5.0926 |
1100 |
1.1150 |
4.9111 |
2.2161 |
1.4352 |
0.2928 |
0.7815 |
0.7849 |
0.7859 |
0.7859 |
0.7138 |
5.5556 |
1200 |
1.0724 |
4.8492 |
2.2021 |
1.3871 |
0.3018 |
0.7766 |
0.7791 |
0.7807 |
0.7807 |
0.6706 |
6.0185 |
1300 |
1.0560 |
4.9024 |
2.2141 |
1.3650 |
0.2941 |
0.7786 |
0.7823 |
0.7833 |
0.7833 |
0.6112 |
6.4815 |
1400 |
1.0594 |
5.0772 |
2.2533 |
1.3694 |
0.2689 |
0.7750 |
0.7759 |
0.7781 |
0.7781 |
0.5906 |
6.9444 |
1500 |
1.0611 |
5.1421 |
2.2676 |
1.3794 |
0.2596 |
0.7736 |
0.7734 |
0.7755 |
0.7755 |
0.5597 |
7.4074 |
1600 |
1.0286 |
5.0419 |
2.2454 |
1.3290 |
0.2740 |
0.7839 |
0.7879 |
0.7885 |
0.7885 |
0.5422 |
7.8704 |
1700 |
1.0531 |
5.2061 |
2.2817 |
1.3596 |
0.2504 |
0.7672 |
0.7678 |
0.7702 |
0.7702 |
0.5255 |
8.3333 |
1800 |
1.0478 |
5.2565 |
2.2927 |
1.3372 |
0.2431 |
0.7811 |
0.7853 |
0.7859 |
0.7859 |
0.5116 |
8.7963 |
1900 |
1.0544 |
5.2090 |
2.2823 |
1.3546 |
0.2500 |
0.7721 |
0.7733 |
0.7755 |
0.7755 |
0.5213 |
9.2593 |
2000 |
1.0423 |
5.1715 |
2.2741 |
1.3341 |
0.2554 |
0.7819 |
0.7846 |
0.7859 |
0.7859 |
0.4999 |
9.7222 |
2100 |
1.0566 |
5.2819 |
2.2982 |
1.3481 |
0.2395 |
0.7721 |
0.7733 |
0.7755 |
0.7755 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1